aboutsummaryrefslogtreecommitdiff
path: root/src/math/polygon
diff options
context:
space:
mode:
authorArne Dußin2021-01-06 22:56:37 +0100
committerArne Dußin2021-01-06 22:56:37 +0100
commitfa1afb6be3ba2d521eb0791edc0bb8e631a85327 (patch)
treee0a365444784efaaeb1eea6373b34559b6d57fbc /src/math/polygon
parent1c81d7c70fe891e6ded49d49d6a09f04ce74dd6e (diff)
parent30b23db9e86fdf72a4e7de72213df274ce19123e (diff)
downloadgraf_karto-fa1afb6be3ba2d521eb0791edc0bb8e631a85327.tar.gz
graf_karto-fa1afb6be3ba2d521eb0791edc0bb8e631a85327.zip
Merge branch 'master' into snapping
Diffstat (limited to 'src/math/polygon')
-rw-r--r--src/math/polygon/mod.rs194
-rw-r--r--src/math/polygon/polygon_graph.rs67
-rw-r--r--src/math/polygon/triangulate.rs59
3 files changed, 193 insertions, 127 deletions
diff --git a/src/math/polygon/mod.rs b/src/math/polygon/mod.rs
index 1577f63..bc145ed 100644
--- a/src/math/polygon/mod.rs
+++ b/src/math/polygon/mod.rs
@@ -6,12 +6,12 @@ pub mod triangulate;
pub use polygon_graph::*;
pub use triangulate::*;
-use super::{LineSegment, Rect, Surface, TripletOrientation, Vec2};
+use super::{ExactSurface, LineSegment, Rect, Surface, TripletOrientation, Vec2};
use crate::math;
-use nalgebra::{ClosedDiv, ClosedMul, ClosedSub, RealField, Scalar};
-use num_traits::Zero;
+use float_cmp::ApproxEq;
+use nalgebra::{RealField, Scalar};
use serde::{Deserialize, Serialize};
-use std::ops::Neg;
+use std::fmt::Debug;
use thiserror::Error;
/// Describes errors that can happen when handling polygons, especially on creation.
@@ -41,13 +41,14 @@ impl<T: Scalar + Copy> Polygon<T> {
/// be reversed to be left-turning.
/// Checks if the corners make a valid polygon before creating it. If the check fails, an error
/// will be returned.
- pub fn new(corners: Vec<Vec2<T>>) -> Result<Self, PolygonError<T>>
+ pub fn new<M>(corners: Vec<Vec2<T>>, t_margin: M) -> Result<Self, PolygonError<T>>
where
- T: RealField,
+ T: RealField + ApproxEq<Margin = M>,
+ M: Copy,
{
- Self::check_validity(&corners)?;
+ Self::check_validity(&corners, t_margin)?;
- let corners = if combined_angle(&corners) > T::zero() {
+ let corners = if combined_angle(&corners, t_margin) > T::zero() {
corners
} else {
corners.into_iter().rev().collect()
@@ -57,13 +58,14 @@ impl<T: Scalar + Copy> Polygon<T> {
}
/// Like new, but does not perform any validity checks, so be careful when using this function.
- pub fn new_unchecked(corners: Vec<Vec2<T>>) -> Self
+ pub fn new_unchecked<M>(corners: Vec<Vec2<T>>, t_margin: M) -> Self
where
- T: RealField,
+ T: RealField + ApproxEq<Margin = M>,
+ M: Copy,
{
- assert!(Polygon::check_validity(&corners).is_ok());
+ assert!(Polygon::check_validity(&corners, t_margin).is_ok());
- let corners = if combined_angle(&corners) > T::zero() {
+ let corners = if combined_angle(&corners, t_margin) > T::zero() {
corners
} else {
corners.into_iter().rev().collect()
@@ -74,9 +76,10 @@ impl<T: Scalar + Copy> Polygon<T> {
/// Checks if a set of corners can be made into a polygon or not. Returns Ok if they can, or
/// the reason they cannot in form of a PolygonError.
- pub fn check_validity(corners: &[Vec2<T>]) -> Result<(), PolygonError<T>>
+ pub fn check_validity<M>(corners: &[Vec2<T>], t_margin: M) -> Result<(), PolygonError<T>>
where
- T: RealField,
+ T: RealField + ApproxEq<Margin = M>,
+ M: Copy,
{
if corners.len() < 3 {
return Err(PolygonError::TooFewVertices(corners.len()));
@@ -105,7 +108,7 @@ impl<T: Scalar + Copy> Polygon<T> {
let next_j = (j + 1) % corners.len();
let line_j = LineSegment::new(corners[j], corners[next_j]);
- if LineSegment::intersect(&line_i, &line_j) {
+ if LineSegment::intersect(&line_i, &line_j, t_margin) {
return Err(PolygonError::SelfIntersect(line_i, line_j));
}
}
@@ -170,31 +173,28 @@ impl<T: Scalar + Copy> Polygon<T> {
/// Join this polygon with another, ensuring the area of the two stays the same, but the
/// overlap is not doubled, but instead joined into one.
/// Returns the Polygons themselves, if there is no overlap
- pub fn unite(self, other: Polygon<T>) -> Vec<Polygon<T>>
+ pub fn unite<M>(self, other: Polygon<T>, t_margin: M) -> Vec<Polygon<T>>
where
- T: RealField,
+ T: RealField + ApproxEq<Margin = M>,
+ M: Copy,
{
let mut graph = PolygonGraph::from_polygon(&self);
graph.add_all(&other);
- // TODO: Make bounding box support multiple polygons
- vec![graph.bounding_polygon()]
+ // TODO: Make bounding polygon support multiple polygons
+ match graph.bounding_polygon(t_margin) {
+ Some(polygon) => vec![polygon],
+ None => vec![],
+ }
}
}
-impl<
- T: Scalar
- + Copy
- + ClosedSub
- + ClosedMul
- + ClosedDiv
- + Neg<Output = T>
- + PartialOrd
- + RealField
- + Zero,
- > Surface<T> for Polygon<T>
+impl<T, M> Surface<T, M> for Polygon<T>
+where
+ T: RealField + ApproxEq<Margin = M>,
+ M: Copy,
{
- fn contains_point(&self, p: &Vec2<T>) -> bool {
+ fn contains_point(&self, p: &Vec2<T>, margin: M) -> bool {
let n = self.corners.len();
let a = self.corners[n - 1];
@@ -247,7 +247,7 @@ impl<
}
let lx = ax + (((bx - ax) * -ay) / (by - ay));
- if lx == T::zero() {
+ if lx.approx_eq(T::zero(), margin) {
// point on edge
return true;
}
@@ -269,11 +269,13 @@ impl<
(depth & 1) == 1
}
- fn contains_line_segment(&self, line_segment: &LineSegment<T>) -> bool {
+ fn contains_line_segment(&self, line_segment: &LineSegment<T>, margin: M) -> bool {
/* In case at least one of the points is not contained by the polygon, the line cannot lie
* inside of the polygon in its entirety.
*/
- if !self.contains_point(&line_segment.start) || !self.contains_point(&line_segment.end) {
+ if !self.contains_point(&line_segment.start, margin)
+ || !self.contains_point(&line_segment.end, margin)
+ {
return false;
}
@@ -294,9 +296,13 @@ impl<
let prev = (c + self.corners.len() - 1) % self.corners.len();
let next = (c + 1) % self.corners.len();
- let edge_angle =
- math::triplet_angle(self.corners[prev], self.corners[c], self.corners[next]);
- let vec_angle = math::triplet_angle(self.corners[prev], self.corners[c], p);
+ let edge_angle = math::triplet_angle(
+ self.corners[prev],
+ self.corners[c],
+ self.corners[next],
+ margin,
+ );
+ let vec_angle = math::triplet_angle(self.corners[prev], self.corners[c], p, margin);
vec_angle == T::zero() || vec_angle >= edge_angle
};
@@ -328,16 +334,18 @@ impl<
let current_edge = LineSegment::new(self.corners[c], self.corners[next]);
- if LineSegment::intersect(&line_segment, &current_edge) {
+ if LineSegment::intersect(&line_segment, &current_edge, margin) {
let orientation_start = math::triplet_orientation(
current_edge.start,
current_edge.end,
line_segment.start,
+ margin,
);
let orientation_end = math::triplet_orientation(
current_edge.start,
current_edge.end,
line_segment.end,
+ margin,
);
match (orientation_start, orientation_end) {
/* If at least one of the points is on the edge, make sure, the line points
@@ -364,7 +372,7 @@ impl<
true
}
- fn contains_rect(&self, rect: &Rect<T>) -> bool {
+ fn contains_rect(&self, rect: &Rect<T>, margin: M) -> bool {
/* Turn the rectangle into a vector with its hull line segments. If all hull segments are
* contained in the polygon, the rectangle is contained completely.
*/
@@ -393,18 +401,19 @@ impl<
hull_edges
.iter()
- .all(|edge| self.contains_line_segment(edge))
+ .all(|edge| self.contains_line_segment(edge, margin))
}
- fn contains_polygon(&self, polygon: &Polygon<T>) -> bool {
+ fn contains_polygon(&self, polygon: &Polygon<T>, margin: M) -> bool {
/* Check for all edges of the polygon that they are contained by the polygon. If they all
* are, then the polygon itself must also be contained.
*/
for i in 0..polygon.corners.len() {
let next = (i + 1) % polygon.corners.len();
- if !self
- .contains_line_segment(&LineSegment::new(polygon.corners[i], polygon.corners[next]))
- {
+ if !self.contains_line_segment(
+ &LineSegment::new(polygon.corners[i], polygon.corners[next]),
+ margin,
+ ) {
return false;
}
}
@@ -421,13 +430,17 @@ impl<
* after another until finally connecting the last point to the first point in radians. Negative,
* when the points in sum are right-turning, positive, when they are left-turning.
*/
-fn combined_angle<T: Scalar + Copy + RealField>(points: &[Vec2<T>]) -> T {
+fn combined_angle<T: Scalar + Copy + RealField, M>(points: &[Vec2<T>], margin: M) -> T
+where
+ T: ApproxEq<Margin = M>,
+ M: Copy,
+{
let mut combined_angle = T::zero();
for i in 0..points.len() {
let prev = (i + points.len() - 1) % points.len();
let next = (i + 1) % points.len();
- let angle = math::triplet_angle(points[prev], points[i], points[next]);
+ let angle = math::triplet_angle(points[prev], points[i], points[next], margin);
if angle == T::zero() || angle == T::two_pi() {
continue;
}
@@ -445,21 +458,27 @@ mod test {
#[test]
fn check_validity() {
- Polygon::check_validity(&[Vec2::new(0., 0.), Vec2::new(1., 0.), Vec2::new(0., 1.)])
- .expect("Simple triangle does not pass validity check");
+ Polygon::check_validity(
+ &[Vec2::new(0., 0.), Vec2::new(1., 0.), Vec2::new(0., 1.)],
+ (f64::EPSILON, 0),
+ )
+ .expect("Simple triangle does not pass validity check");
}
#[test]
fn polygon_contains() {
- let polygon = Polygon::new(vec![
- Vec2::new(0., 0.),
- Vec2::new(-1., 1.),
- Vec2::new(0., 2.),
- Vec2::new(1., 3.),
- Vec2::new(3., 1.5),
- Vec2::new(2., 0.),
- Vec2::new(1., 1.),
- ])
+ let polygon = Polygon::new(
+ vec![
+ Vec2::new(0., 0.),
+ Vec2::new(-1., 1.),
+ Vec2::new(0., 2.),
+ Vec2::new(1., 3.),
+ Vec2::new(3., 1.5),
+ Vec2::new(2., 0.),
+ Vec2::new(1., 1.),
+ ],
+ (f64::EPSILON, 0),
+ )
.unwrap();
assert!(!polygon.contains_point(&Vec2::new(1., -2.)));
@@ -474,18 +493,21 @@ mod test {
#[test]
fn contains_line_segment() {
- let polygon = Polygon::new(vec![
- Vec2::new(0., 0.),
- Vec2::new(0., 4.5),
- Vec2::new(6.5, 4.5),
- Vec2::new(5.5, 0.),
- Vec2::new(5.5, 3.),
- Vec2::new(1.5, 3.),
- Vec2::new(1.5, 1.),
- Vec2::new(2., 0.5),
- Vec2::new(4., 2.),
- Vec2::new(4., 0.),
- ])
+ let polygon = Polygon::new(
+ vec![
+ Vec2::new(0., 0.),
+ Vec2::new(0., 4.5),
+ Vec2::new(6.5, 4.5),
+ Vec2::new(5.5, 0.),
+ Vec2::new(5.5, 3.),
+ Vec2::new(1.5, 3.),
+ Vec2::new(1.5, 1.),
+ Vec2::new(2., 0.5),
+ Vec2::new(4., 2.),
+ Vec2::new(4., 0.),
+ ],
+ (f64::EPSILON, 0),
+ )
.unwrap();
/* NOTE: From now on, inside means inside the polygon, but might be on an edge or on a
@@ -531,22 +553,28 @@ mod test {
#[test]
fn polygon_union() {
- let first = Polygon::new(vec![
- Vec2::new(-2., 1.),
- Vec2::new(-0.5, 2.5),
- Vec2::new(2., 2.),
- Vec2::new(0.5, 1.5),
- Vec2::new(1., 0.),
- Vec2::new(-0.5, 1.),
- ])
+ let first = Polygon::new(
+ vec![
+ Vec2::new(-2., 1.),
+ Vec2::new(-0.5, 2.5),
+ Vec2::new(2., 2.),
+ Vec2::new(0.5, 1.5),
+ Vec2::new(1., 0.),
+ Vec2::new(-0.5, 1.),
+ ],
+ (f64::EPSILON, 0),
+ )
.unwrap();
- let second = Polygon::new(vec![
- Vec2::new(0., 0.),
- Vec2::new(-2., 2.),
- Vec2::new(3., 2.),
- Vec2::new(1.5, 0.),
- ])
+ let second = Polygon::new(
+ vec![
+ Vec2::new(0., 0.),
+ Vec2::new(-2., 2.),
+ Vec2::new(3., 2.),
+ Vec2::new(1.5, 0.),
+ ],
+ (f64::EPSILON, 0),
+ )
.unwrap();
let union = first.unite(second);
diff --git a/src/math/polygon/polygon_graph.rs b/src/math/polygon/polygon_graph.rs
index fd373dd..5e3a576 100644
--- a/src/math/polygon/polygon_graph.rs
+++ b/src/math/polygon/polygon_graph.rs
@@ -5,16 +5,18 @@
use super::Polygon;
use crate::math::{self, LineSegment, Vec2};
+use float_cmp::ApproxEq;
use nalgebra::{RealField, Scalar};
use std::cmp::{Ordering, PartialOrd};
-#[derive(Debug)]
-struct Node<T: Scalar + Copy> {
+#[derive(Debug, Clone)]
+pub(super) struct Node<T: Scalar + Copy> {
pub vec: Vec2<T>,
pub adjacent: Vec<Vec2<T>>,
}
-struct EdgeIterator<'a, T: Scalar + Copy> {
+/// An iterator over the graph edges. These are not in a particular order.
+pub struct EdgeIterator<'a, T: Scalar + Copy> {
nodes: &'a [Node<T>],
pos: (usize, usize),
}
@@ -22,7 +24,7 @@ struct EdgeIterator<'a, T: Scalar + Copy> {
/// An undirected graph, that is optimised for polygon edge operations. Since edges of a polygon
/// are an undirected graph, this structure also holds both directions. This makes it rather space
/// inefficient, but makes edge operations rather swift.
-#[derive(Debug)]
+#[derive(Debug, Clone)]
pub struct PolygonGraph<T: Scalar + Copy + PartialOrd> {
/// The nodes of the graph, together with their adjacency list.
nodes: Vec<Node<T>>,
@@ -45,7 +47,7 @@ fn find_node<T: Scalar + Copy + PartialOrd>(
}
impl<'a, T: Scalar + Copy> EdgeIterator<'a, T> {
- pub fn new(nodes: &'a [Node<T>]) -> Self {
+ pub(super) fn new(nodes: &'a [Node<T>]) -> Self {
Self { nodes, pos: (0, 0) }
}
}
@@ -114,6 +116,11 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
// Helper function to add the edge into the internal graph representation for one side only.
// Since to the outside the graph should always be undirected, this must be private.
fn add_edge_onesided(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool {
+ // Cannot add self-referential edges.
+ if from == to {
+ return false;
+ }
+
match find_node(&self.nodes, from) {
Ok(pos) => match find_vec2(&self.nodes[pos].adjacent, to) {
Ok(_) => return false,
@@ -131,8 +138,10 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
true
}
- /// Add an edge between the given vectors. If the edge already exists, it does nothing and
- /// returns false, otherwise it returns true after addition.
+ /// Add an edge between the given vectors. If the edge already exists or the starting and end
+ /// point are the same, it does nothing and returns false, otherwise it returns true after
+ /// addition. Note, that in a normal graph adding a self-referential edge would be perfectly fine,
+ /// but in a graph representing a polygon this does not really make sense.
pub fn add_edge(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool {
if !self.add_edge_onesided(from, to) {
return false;
@@ -204,9 +213,10 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
/// Calculates all points where the graph edges intersect with one another. It then adds them
/// into the adjacency list such that the intersection point lies between the nodes of the
/// lines.
- pub fn intersect_self(&mut self)
+ pub fn intersect_self<M>(&mut self, margin: M)
where
- T: RealField,
+ T: RealField + ApproxEq<Margin = M>,
+ M: Copy,
{
// Find all intersections with all other edges.
let mut to_delete: Vec<LineSegment<T>> = Vec::new();
@@ -216,12 +226,14 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
* intersecting with.
*/
let mut intersections: Vec<Vec2<T>> = Vec::new();
- for compare_segment in EdgeIterator::new(&self.nodes) {
+ for compare_segment in self.edge_iter() {
if segment.eq_ignore_dir(&compare_segment) {
continue;
}
- if let Some(intersection) = LineSegment::intersection(&segment, &compare_segment) {
+ if let Some(intersection) =
+ LineSegment::intersection(&segment, &compare_segment, margin)
+ {
intersections.push(intersection);
}
}
@@ -233,7 +245,7 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
to_delete.push(segment.clone());
// Safe, since at least the line segment itself is represented.
- let segments = segment.segments(&intersections);
+ let segments = segment.segments(&intersections, margin);
for i in 1..segments.len() {
to_add.push((segments[i - 1], segments[i]));
}
@@ -247,16 +259,32 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
}
}
+ /// Get an iterator over all edges in the graph.
+ pub fn edge_iter(&self) -> EdgeIterator<T> {
+ EdgeIterator::new(&self.nodes)
+ }
+
+ /// Check if the the graph has a vertex (node) at the given position. Returns true if so.
+ /// A point that lies on an edge, but is not registered as a node will not count.
+ pub fn has_node(&self, at: &Vec2<T>) -> bool {
+ find_node(&self.nodes, at).is_ok()
+ }
+
/// Finds the minimal polygon that could hold this graph together, i.e. could contain the
/// entire graph, but with the minimal amount of space. It may however still contain extra
/// corner points, meaning an extra edge for three collinear points on this edge, that can be
/// cleaned up.
- pub fn bounding_polygon(mut self) -> Polygon<T>
+ /// If the graph cannot be turned into a polygon, it will return `None`
+ pub fn bounding_polygon<M>(mut self, margin: M) -> Option<Polygon<T>>
where
- T: RealField,
+ T: RealField + ApproxEq<Margin = M>,
+ M: Copy,
{
- assert!(self.num_nodes() >= 3);
- self.intersect_self();
+ if self.num_nodes() < 3 {
+ return None;
+ }
+
+ self.intersect_self(margin);
/* Start with the top-left node. Since the nodes are always sorted by y over x from top to
* bottom and left to right, this is the very first element in the vector. This is also a
@@ -279,8 +307,8 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
.adjacent
.iter()
.max_by(|&a, &b| {
- math::triplet_angle(last_vec, current_node.vec, *a)
- .partial_cmp(&math::triplet_angle(last_vec, current_node.vec, *b))
+ math::triplet_angle(last_vec, current_node.vec, *a, margin)
+ .partial_cmp(&math::triplet_angle(last_vec, current_node.vec, *b, margin))
.unwrap_or(Ordering::Equal)
})
.expect("Adjacency list is empty. The polygon has an open edge (is broken)");
@@ -296,7 +324,8 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
.expect("Failure to find node that should be inside list.")];
}
- Polygon::new(bounding_corners).expect("PolygonGraph produced invalid polygon")
+ // Try to create a polygon from the corners and return it.
+ Polygon::new(bounding_corners, margin).ok()
}
}
diff --git a/src/math/polygon/triangulate.rs b/src/math/polygon/triangulate.rs
index 8a18cd7..4106095 100644
--- a/src/math/polygon/triangulate.rs
+++ b/src/math/polygon/triangulate.rs
@@ -2,7 +2,8 @@
use super::Polygon;
use crate::math::{self, LineSegment, Surface, Triangle};
-use nalgebra::{RealField, Scalar};
+use float_cmp::ApproxEq;
+use nalgebra::RealField;
/// Type that saves the flags that match a corner in a space efficient manner.
type Flags = u8;
@@ -16,9 +17,10 @@ const FLAG_EAR: Flags = 0b0000_0001;
// used. Consider removing it entirely.
const FLAG_CONVEX: Flags = 0b0000_0010;
-fn flag_corner<T: Scalar + Copy>(polygon: &Polygon<T>, corner: usize) -> Flags
+fn flag_corner<T: RealField, M>(polygon: &Polygon<T>, corner: usize, margin: M) -> Flags
where
- T: RealField,
+ T: ApproxEq<Margin = M>,
+ M: Copy,
{
// First, check if it is convex. If it is not, it can also not be an ear.
let prev = (corner + polygon.corners.len() - 1) % polygon.corners.len();
@@ -31,6 +33,7 @@ where
polygon.corners[prev],
polygon.corners[corner],
polygon.corners[next],
+ margin,
) < T::pi()
{
// The corner is reflex.
@@ -38,10 +41,10 @@ where
}
// The corner is convex, check if it is also an ear.
- if polygon.contains_line_segment(&LineSegment::new(
- polygon.corners[prev],
- polygon.corners[next],
- )) {
+ if polygon.contains_line_segment(
+ &LineSegment::new(polygon.corners[prev], polygon.corners[next]),
+ margin,
+ ) {
// Corner is an ear.
FLAG_EAR | FLAG_CONVEX
} else {
@@ -50,13 +53,14 @@ where
}
}
-/// Uses earclipping algorithm (see https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf)
+/// Uses earclipping algorithm (see <https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf>)
/// to find an explanation of what exactly is happening.
/// Currently only handles simple polygons, but once the polygon struct supports holes must be
/// extended to also support those.
-pub fn triangulate<T: Scalar + Copy>(mut polygon: Polygon<T>) -> Vec<Triangle<T>>
+pub fn triangulate<T: RealField, M>(mut polygon: Polygon<T>, margin: M) -> Vec<Triangle<T>>
where
- T: RealField,
+ T: ApproxEq<Margin = M>,
+ M: Copy,
{
assert!(polygon.corners.len() >= 3);
/* Information about the corner of the polygon. See the flags constant for information about
@@ -64,7 +68,7 @@ where
*/
let mut flags = Vec::with_capacity(polygon.corners.len());
for c in 0..polygon.corners.len() {
- flags.push(flag_corner(&polygon, c));
+ flags.push(flag_corner(&polygon, c, margin));
}
let mut triangles = Vec::with_capacity(polygon.corners.len() - 2);
@@ -91,6 +95,7 @@ where
polygon.corners[prev],
polygon.corners[ear],
polygon.corners[next],
+ margin,
));
// Remove the ear from the polygon and the flag list.
@@ -107,8 +112,8 @@ where
};
let next = if ear == polygon.corners.len() { 0 } else { ear };
- flags[prev] = flag_corner(&polygon, prev);
- flags[next] = flag_corner(&polygon, next);
+ flags[prev] = flag_corner(&polygon, prev, margin);
+ flags[next] = flag_corner(&polygon, next, margin);
}
// Push the remaining triangle into the list.
@@ -116,6 +121,7 @@ where
polygon.corners[0],
polygon.corners[1],
polygon.corners[2],
+ margin,
));
triangles
@@ -128,18 +134,21 @@ mod test {
#[test]
fn triangulate() {
- let polygon = Polygon::new(vec![
- Vec2::new(0., 0.),
- Vec2::new(0., 4.5),
- Vec2::new(6.5, 4.5),
- Vec2::new(5.5, 0.),
- Vec2::new(5.5, 3.),
- Vec2::new(1.5, 3.),
- Vec2::new(1.5, 1.),
- Vec2::new(2., 0.5),
- Vec2::new(4., 2.),
- Vec2::new(4., 0.),
- ])
+ let polygon = Polygon::new(
+ vec![
+ Vec2::new(0., 0.),
+ Vec2::new(0., 4.5),
+ Vec2::new(6.5, 4.5),
+ Vec2::new(5.5, 0.),
+ Vec2::new(5.5, 3.),
+ Vec2::new(1.5, 3.),
+ Vec2::new(1.5, 1.),
+ Vec2::new(2., 0.5),
+ Vec2::new(4., 2.),
+ Vec2::new(4., 0.),
+ ],
+ (f64::EPSILON, 0),
+ )
.unwrap();
let triangles = super::triangulate(polygon);