diff options
Diffstat (limited to 'src/math/polygon')
| -rw-r--r-- | src/math/polygon/mod.rs | 177 | ||||
| -rw-r--r-- | src/math/polygon/polygon_graph.rs | 463 | ||||
| -rw-r--r-- | src/math/polygon/triangulate.rs | 13 |
3 files changed, 653 insertions, 0 deletions
diff --git a/src/math/polygon/mod.rs b/src/math/polygon/mod.rs new file mode 100644 index 0000000..4530857 --- /dev/null +++ b/src/math/polygon/mod.rs @@ -0,0 +1,177 @@ +//! Contains functions and structures to help with operations on polygons. + +pub mod polygon_graph; +pub mod triangulate; + +pub use polygon_graph::*; +pub use triangulate::*; + +use super::Vec2; +use nalgebra::{ClosedDiv, ClosedMul, ClosedSub, RealField, Scalar}; +use num_traits::Zero; +use std::ops::Neg; + +#[derive(Debug)] +// TODO: Support polygons with holes +pub struct Polygon<T: Scalar + Copy> { + pub corners: Vec<Vec2<T>>, +} + +impl<T: Scalar + Copy> Polygon<T> { + pub fn new(corners: Vec<Vec2<T>>) -> Self { + Self { corners } + } + + /// Check whether a point is inside a polygon or not. If a point lies on an edge, it also + /// counts as inside the polygon. + pub fn contains_point(&self, p: Vec2<T>) -> bool + where + T: Zero + ClosedSub + ClosedMul + ClosedDiv + Neg<Output = T> + PartialOrd, + { + let n = self.corners.len(); + + let a = self.corners[n - 1]; + let mut b = self.corners[n - 2]; + let mut ax; + let mut ay = a.y - p.y; + let mut bx = b.x - p.x; + let mut by = b.y - p.y; + + let mut lup = by > ay; + for i in 0..n { + // ax = bx; + ay = by; + b = self.corners[i]; + bx = b.x - p.x; + by = b.y - p.y; + + if ay == by { + continue; + } + lup = by > ay; + } + + let mut depth = 0; + for i in 0..n { + ax = bx; + ay = by; + let b = &self.corners[i]; + bx = b.x - p.x; + by = b.y - p.y; + + if ay < T::zero() && by < T::zero() { + // both "up" or both "down" + continue; + } + if ay > T::zero() && by > T::zero() { + // both "up" or both "down" + continue; + } + if ax < T::zero() && bx < T::zero() { + // both points on the left + continue; + } + + if ay == by && (if ax < bx { ax } else { bx }) <= T::zero() { + return true; + } + if ay == by { + continue; + } + + let lx = ax + (((bx - ax) * -ay) / (by - ay)); + if lx == T::zero() { + // point on edge + return true; + } + if lx > T::zero() { + depth += 1; + } + if ay == T::zero() && lup && by > ay { + // hit vertex, both up + depth -= 1; + } + if ay == T::zero() && !lup && by < ay { + // hit vertex, both down + depth -= 1; + } + + lup = by > ay; + } + + (depth & 1) == 1 + } + + /// Join this polygon with another, ensuring the area of the two stays the same, but the + /// overlap is not doubled, but instead joined into one. + /// Returns the Polygons themselves, if there is no overlap + pub fn unite(self, other: Polygon<T>) -> Vec<Polygon<T>> + where + T: RealField, + { + let mut graph = PolygonGraph::from_polygon(&self); + graph.add_all(&other); + + // TODO: Make bounding box support multiple polygons + vec![graph.bounding_polygon()] + } +} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn polygon_contains() { + let polygon = Polygon::new(vec![ + Vec2::new(0., 0.), + Vec2::new(-1., 1.), + Vec2::new(0., 2.), + Vec2::new(1., 3.), + Vec2::new(3., 1.5), + Vec2::new(2., 0.), + Vec2::new(1., 1.), + ]); + + assert!(!polygon.contains_point(Vec2::new(1., -2.))); + assert!(!polygon.contains_point(Vec2::new(-1., 0.5))); + assert!(polygon.contains_point(Vec2::new(0., 0.5))); + assert!(polygon.contains_point(Vec2::new(0.5, 1.))); + assert!(polygon.contains_point(Vec2::new(0.5, 1.5))); + assert!(!polygon.contains_point(Vec2::new(-2., 1.9))); + assert!(!polygon.contains_point(Vec2::new(0., 3.))); + assert!(polygon.contains_point(Vec2::new(1., 3.))); + } + + #[test] + fn polygon_union() { + let first = Polygon::new(vec![ + Vec2::new(-2., 1.), + Vec2::new(-0.5, 2.5), + Vec2::new(2., 2.), + Vec2::new(0.5, 1.5), + Vec2::new(1., 0.), + Vec2::new(-0.5, 1.), + ]); + + let second = Polygon::new(vec![ + Vec2::new(0., 0.), + Vec2::new(-2., 2.), + Vec2::new(3., 2.), + Vec2::new(1.5, 0.), + ]); + + let union = first.unite(second); + assert_eq!(union.len(), 1); + let union = &union[0]; + + println!("Union of the two polygons: {:?}", union); + + assert_eq!(union.corners.len(), 11); + assert!(union + .corners + .iter() + .find(|&p| p.x == 0. && p.y == 0.) + .is_some()); + } +} diff --git a/src/math/polygon/polygon_graph.rs b/src/math/polygon/polygon_graph.rs new file mode 100644 index 0000000..9477fbc --- /dev/null +++ b/src/math/polygon/polygon_graph.rs @@ -0,0 +1,463 @@ +use super::Polygon; +use crate::math::{self, LineSegment, Vec2}; +use nalgebra::{RealField, Scalar}; +use std::cmp::{Ordering, PartialOrd}; + +#[derive(Debug)] +struct Node<T: Scalar + Copy> { + pub vec: Vec2<T>, + pub adjacent: Vec<Vec2<T>>, +} + +struct EdgeIterator<'a, T: Scalar + Copy> { + nodes: &'a [Node<T>], + pos: (usize, usize), +} + +/// An undirected graph, that is optimised for polygon edge operations. Since edges of a polygon +/// are an undirected graph, this structure also holds both directions. This makes it rather space +/// inefficient, but makes edge operations rather swift. ß +#[derive(Debug)] +pub struct PolygonGraph<T: Scalar + Copy + PartialOrd> { + /// The nodes of the graph, together with their adjacency list. + nodes: Vec<Node<T>>, +} +// Helper functions to find nodes/vecs in sorted fields, so It doesn't always have to be written +// out. +#[inline] +fn find_vec2<T: Scalar + Copy + PartialOrd>( + field: &[Vec2<T>], + lookup: &Vec2<T>, +) -> Result<usize, usize> { + field.binary_search_by(|n| n.partial_cmp(lookup).unwrap_or(Ordering::Greater)) +} +#[inline] +fn find_node<T: Scalar + Copy + PartialOrd>( + field: &[Node<T>], + lookup: &Vec2<T>, +) -> Result<usize, usize> { + field.binary_search_by(|n| n.vec.partial_cmp(lookup).unwrap_or(Ordering::Greater)) +} + +impl<'a, T: Scalar + Copy> EdgeIterator<'a, T> { + pub fn new(nodes: &'a [Node<T>]) -> Self { + Self { nodes, pos: (0, 0) } + } +} + +impl<'a, T: Scalar + Copy> Iterator for EdgeIterator<'a, T> { + type Item = LineSegment<T>; + + fn next(&mut self) -> Option<Self::Item> { + // Try to find the element in the nodes vector, if it exists. + if let Some(node) = self.nodes.get(self.pos.0) { + let end = node.adjacent[self.pos.1]; + + // Advance the iterator to the next possible element + if self.pos.1 + 1 < node.adjacent.len() { + self.pos.1 += 1; + } else { + self.pos.1 = 0; + self.pos.0 += 1; + } + + Some(LineSegment::new(node.vec, end)) + } else { + None + } + } +} + +impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> { + /// Create a new, empty polygon graph. + pub fn new() -> Self { + Self { nodes: Vec::new() } + } + + /// Count the number of edges in the graph. Internally, for each two connected points there are + /// two edges, but this returns the amount of polygon edges. + pub fn num_edges(&self) -> usize { + let mut num_edges = 0; + for node in &self.nodes { + for _ in &node.adjacent { + num_edges += 1; + } + } + + assert!(num_edges % 2 == 0); + num_edges / 2 + } + + /// Count the number of nodes in this graph. If this graph consists of multiple polygons, this + /// can be different than the amount of corners, since corners with the same position are only + /// counted once. + pub fn num_nodes(&self) -> usize { + self.nodes.len() + } + + /// Checks if there is an edge between the two given vectors. Is commutative in respect to the + /// two arguments. + pub fn has_edge(&self, from: &Vec2<T>, to: &Vec2<T>) -> bool { + // Binary search the starting and then the end node. + if let Ok(from) = find_node(&self.nodes, from) { + find_vec2(&self.nodes[from].adjacent, to).is_ok() + } else { + false + } + } + + // Helper function to add the edge into the internal graph representation for one side only. + // Since to the outside the graph should always be undirected, this must be private. + fn add_edge_onesided(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool { + match find_node(&self.nodes, from) { + Ok(pos) => match find_vec2(&self.nodes[pos].adjacent, to) { + Ok(_) => return false, + Err(i) => self.nodes[pos].adjacent.insert(i, *to), + }, + Err(pos) => self.nodes.insert( + pos, + Node { + vec: *from, + adjacent: vec![*to], + }, + ), + } + + true + } + + /// Add an edge between the given vectors. If the edge already exists, it does nothing and + /// returns false, otherwise it returns true after addition. + pub fn add_edge(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool { + if !self.add_edge_onesided(from, to) { + return false; + } + + let back_edge_succ = self.add_edge_onesided(to, from); + assert!(back_edge_succ); + + true + } + + // Helper function to remove the edge in the internal graph representation for one side only. + // Since to the outside the graph should always be undirected, this must be private. + fn remove_edge_onesided(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool { + if let Ok(from) = find_node(&self.nodes, from) { + if let Ok(to) = find_vec2(&self.nodes[from].adjacent, to) { + // Remove the edge from the vector. + self.nodes[from].adjacent.remove(to); + + // If the node has no adjacent nodes anymore, remove it entirely. + if self.nodes[from].adjacent.is_empty() { + self.nodes.remove(from); + } + + true + } else { + false + } + } else { + false + } + } + + /// Remove an edge between the given vectors. If there is no edge between them, it does nothing + /// and returns false, otherwise it returns true after deletion. + pub fn remove_edge(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool { + if !self.remove_edge_onesided(from, to) { + return false; + } + + let back_edge_succ = self.remove_edge_onesided(to, from); + assert!(back_edge_succ); + + true + } + + /// Constructs a new PolygonGraph from the provided polygon. Adds a node for every corner and + /// an edge to all connected corners (which should be exactly two, for regular polygons) + pub fn from_polygon(polygon: &Polygon<T>) -> Self { + let mut graph = PolygonGraph { + nodes: Vec::with_capacity(polygon.corners.len()), + }; + + graph.add_all(polygon); + graph + } + + /// Add all edges of the provided polygon into the graph. Requires roughly double as much space + /// as the normal polygon. + pub fn add_all(&mut self, polygon: &Polygon<T>) { + for i in 0..polygon.corners.len() { + self.add_edge( + &polygon.corners[i], + &polygon.corners[(i + 1) % polygon.corners.len()], + ); + } + } + + /// Calculates all points where the graph edges intersect with one another. It then adds them + /// into the adjacency list such that the intersection point lies between the nodes of the + /// lines. + pub fn intersect_self(&mut self) + where + T: RealField, + { + // Find all intersections with all other edges. + let mut to_delete: Vec<LineSegment<T>> = Vec::new(); + let mut to_add: Vec<(Vec2<T>, Vec2<T>)> = Vec::new(); + for segment in EdgeIterator::new(&self.nodes) { + /* Save all intersections of this line with any other line, and the line that it's + * intersecting with. + */ + let mut intersections: Vec<Vec2<T>> = Vec::new(); + for compare_segment in EdgeIterator::new(&self.nodes) { + if segment.eq_ignore_dir(&compare_segment) { + continue; + } + + if let Some(intersection) = LineSegment::intersection(&segment, &compare_segment) { + intersections.push(intersection); + } + } + + if intersections.is_empty() { + continue; + } + + to_delete.push(segment.clone()); + + // Safe, since at least the line segment itself is represented. + let segments = segment.segments(&intersections); + for i in 1..segments.len() { + to_add.push((segments[i - 1], segments[i])); + } + } + + for segment in to_delete { + self.remove_edge(&segment.start, &segment.end); + } + for (start, end) in to_add { + self.add_edge(&start, &end); + } + } + + /// Finds the minimal polygon that could hold this graph together, i.e. could contain the + /// entire graph, but with the minimal amount of space. It may however still contain extra + /// corner points, meaning an extra edge for three collinear points on this edge, that can be + /// cleaned up. + pub fn bounding_polygon(mut self) -> Polygon<T> + where + T: RealField, + { + assert!(self.num_nodes() >= 3); + self.intersect_self(); + + /* Start with the top-left node. Since the nodes are always sorted by y over x from top to + * bottom and left to right, this is the very first element in the vector. This is also a + * corner, because for such a node to be enveloped, there would have to be a node further + * to the top, in which case that node would have been selected. + */ + let mut current_node = &self.nodes[0]; + // Pretend we're coming from the top to start in the right direction. + let mut last_vec = current_node.vec - Vec2::new(T::zero(), T::one()); + let mut bounding_polygon = Polygon::new(vec![current_node.vec]); + loop { + /* Find the next point by choosing the one with the greatest angle. This means we are + * "bending" to the leftmost edge at each step. Since we are going around the polygon + * in a clockwise direction, this yields the hull around the polygon. + * NOTE: Going left is just as viable, but we would have to handle the case where the + * algorithm would try to go back because the edge back has 0 degrees, which would be + * always preferred. Going right makes going back the absolute worst option. + */ + let next_corner = current_node + .adjacent + .iter() + .max_by(|&a, &b| { + math::triplet_angle(last_vec, current_node.vec, *a) + .partial_cmp(&math::triplet_angle(last_vec, current_node.vec, *b)) + .unwrap_or(Ordering::Equal) + }) + .expect("Adjacency list is empty. The polygon has an open edge (is broken)"); + + // When we have come back to the start, the traversal is completed + if *next_corner == bounding_polygon.corners[0] { + break; + } + + bounding_polygon.corners.push(*next_corner); + last_vec = current_node.vec; + current_node = &self.nodes[find_node(&self.nodes, &next_corner) + .expect("Failure to find node that should be inside list.")]; + } + + bounding_polygon + } +} + +impl<T: Scalar + Copy + PartialOrd> Default for PolygonGraph<T> { + fn default() -> Self { + Self::new() + } +} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn from_polygon() { + let a = Vec2::new(0., 0.); + let b = Vec2::new(0., 1.); + let c = Vec2::new(0.5, 1.); + + let triangle = Polygon::new(vec![a, b, c]); + + let graph = PolygonGraph::from_polygon(&triangle); + assert_eq!(graph.num_edges(), 3); + + assert!(graph.has_edge(&a, &b)); + assert!(graph.has_edge(&b, &a)); + + assert!(graph.has_edge(&a, &c)); + assert!(graph.has_edge(&c, &a)); + + assert!(graph.has_edge(&b, &c)); + assert!(graph.has_edge(&c, &b)); + } + + #[test] + fn add_all() { + let top_left = Vec2::new(0., 0.); + let top_right = Vec2::new(1., 0.); + let bot_left = Vec2::new(0., 1.); + let bot_right = Vec2::new(1., 1.); + + let triangle = Polygon::new(vec![top_left, bot_right, top_right]); + + let square = Polygon::new(vec![bot_left, bot_right, top_right, top_left]); + + let mut graph = PolygonGraph::new(); + graph.add_all(&triangle); + graph.add_all(&square); + + assert_eq!(graph.num_edges(), 5); + assert_eq!(graph.num_nodes(), 4); + + assert!(graph.has_edge(&top_left, &top_right)); + assert!(graph.has_edge(&top_right, &top_left)); + + assert!(graph.has_edge(&top_left, &bot_left)); + assert!(graph.has_edge(&bot_left, &top_left)); + + assert!(graph.has_edge(&bot_left, &bot_right)); + assert!(graph.has_edge(&bot_right, &bot_left)); + + assert!(graph.has_edge(&bot_right, &top_right)); + assert!(graph.has_edge(&top_right, &bot_right)); + + assert!(graph.has_edge(&top_left, &bot_right)); + assert!(graph.has_edge(&bot_right, &top_left)); + } + + #[test] + fn intersect_self() { + let first = Polygon::new(vec![ + Vec2::new(0., 0.), + Vec2::new(0., 2.), + Vec2::new(2., 2.), + Vec2::new(3., 1.), + Vec2::new(2., 0.), + ]); + + let second = Polygon::new(vec![ + Vec2::new(2.5, -0.5), + Vec2::new(0., 2.), + Vec2::new(2., 2.), + Vec2::new(2., 0.5), + Vec2::new(2.5, 0.), + ]); + + let mut graph = PolygonGraph::from_polygon(&first); + graph.add_all(&second); + + graph.intersect_self(); + + println!("Intersected graph:"); + println!("{:#?}", &graph); + + assert_eq!(graph.num_nodes(), 9); + assert_eq!(graph.num_edges(), 12); + + assert!(graph.has_edge(&Vec2::new(2., 0.), &Vec2::new(2.25, 0.25))); + assert!(graph.has_edge(&Vec2::new(3., 1.), &Vec2::new(2.25, 0.25))); + assert!(!graph.has_edge(&Vec2::new(2., 0.), &Vec2::new(3., 1.))); + assert!(graph.has_edge(&Vec2::new(0., 2.), &Vec2::new(2., 2.))); + assert!(graph.has_edge(&Vec2::new(2., 2.), &Vec2::new(0., 2.))); + assert!(graph.has_edge(&Vec2::new(0., 2.), &Vec2::new(2., 0.))); + assert!(!graph.has_edge(&Vec2::new(0., 2.), &Vec2::new(2.5, -0.5))); + } + + #[test] + fn bounding_polygon() { + let first = Polygon::new(vec![ + Vec2::new(0., 0.), + Vec2::new(0., 2.), + Vec2::new(2., 2.), + Vec2::new(3., 1.), + Vec2::new(2., 0.), + ]); + + let second = Polygon::new(vec![ + Vec2::new(2.5, -0.5), + Vec2::new(0., 2.), + Vec2::new(2., 2.), + Vec2::new(2., 0.5), + Vec2::new(2.5, 0.), + ]); + + let mut graph = PolygonGraph::from_polygon(&first); + graph.add_all(&second); + + let bounding = graph.bounding_polygon(); + + let num_corners = 8; + assert_eq!(bounding.corners.len(), num_corners); + + // Run around the polygon to see if it was constructed correctly. + let start_i = bounding + .corners + .iter() + .position(|&x| x == Vec2::new(0., 0.)) + .expect("Starting vector does not exist in polygon."); + + assert_eq!( + bounding.corners[(start_i + 1) % num_corners], + Vec2::new(2., 0.) + ); + assert_eq!( + bounding.corners[(start_i + 2) % num_corners], + Vec2::new(2.5, -0.5) + ); + assert_eq!( + bounding.corners[(start_i + 3) % num_corners], + Vec2::new(2.5, 0.0) + ); + assert_eq!( + bounding.corners[(start_i + 4) % num_corners], + Vec2::new(2.25, 0.25) + ); + assert_eq!( + bounding.corners[(start_i + 5) % num_corners], + Vec2::new(3., 1.) + ); + assert_eq!( + bounding.corners[(start_i + 6) % num_corners], + Vec2::new(2., 2.) + ); + assert_eq!( + bounding.corners[(start_i + 7) % num_corners], + Vec2::new(0., 2.) + ); + } +} diff --git a/src/math/polygon/triangulate.rs b/src/math/polygon/triangulate.rs new file mode 100644 index 0000000..4860518 --- /dev/null +++ b/src/math/polygon/triangulate.rs @@ -0,0 +1,13 @@ +//! Module for turning a polygon into a number of non-overlapping triangles. + +use super::Polygon; +use crate::math::Triangle; +use nalgebra::Scalar; + +/// Uses earclipping algorithm (see https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf) +/// to find an explanation of what exactly is happening. +/// Currently only handles simple polygons, but once the polygon struct supports holes must be +/// extended to also support those. +pub fn triangulate<T: Scalar + Copy>(_polygon: &Polygon<T>) -> Vec<Triangle<T>> { + unimplemented!() +} |
