1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
//! Contains functions and structures to help with operations on polygons.
pub mod polygon_graph;
pub mod triangulate;
pub use polygon_graph::*;
pub use triangulate::*;
use super::{LineSegment, Surface, TripletOrientation, Vec2};
use crate::math;
use nalgebra::{ClosedDiv, ClosedMul, ClosedSub, RealField, Scalar};
use num_traits::Zero;
use serde::{Deserialize, Serialize};
use std::ops::Neg;
#[derive(Debug, Deserialize, Serialize)]
// TODO: Support polygons with holes
pub struct Polygon<T: Scalar + Copy> {
pub corners: Vec<Vec2<T>>,
}
impl<T: Scalar + Copy> Polygon<T> {
pub fn new(corners: Vec<Vec2<T>>) -> Self {
Self { corners }
}
/// Check whether a point is inside a polygon or not. If a point lies on an edge, it also
/// counts as inside the polygon.
/// Join this polygon with another, ensuring the area of the two stays the same, but the
/// overlap is not doubled, but instead joined into one.
/// Returns the Polygons themselves, if there is no overlap
pub fn unite(self, other: Polygon<T>) -> Vec<Polygon<T>>
where
T: RealField,
{
let mut graph = PolygonGraph::from_polygon(&self);
graph.add_all(&other);
// TODO: Make bounding box support multiple polygons
vec![graph.bounding_polygon()]
}
}
impl<
T: Scalar
+ Copy
+ ClosedSub
+ ClosedMul
+ ClosedDiv
+ Neg<Output = T>
+ PartialOrd
+ RealField
+ Zero,
> Surface<T> for Polygon<T>
{
fn contains_point(&self, p: &Vec2<T>) -> bool {
let n = self.corners.len();
let a = self.corners[n - 1];
let mut b = self.corners[n - 2];
let mut ax;
let mut ay = a.y - p.y;
let mut bx = b.x - p.x;
let mut by = b.y - p.y;
let mut lup = by > ay;
for i in 0..n {
// ax = bx;
ay = by;
b = self.corners[i];
bx = b.x - p.x;
by = b.y - p.y;
if ay == by {
continue;
}
lup = by > ay;
}
let mut depth = 0;
for i in 0..n {
ax = bx;
ay = by;
let b = &self.corners[i];
bx = b.x - p.x;
by = b.y - p.y;
if ay < T::zero() && by < T::zero() {
// both "up" or both "down"
continue;
}
if ay > T::zero() && by > T::zero() {
// both "up" or both "down"
continue;
}
if ax < T::zero() && bx < T::zero() {
// both points on the left
continue;
}
if ay == by && (if ax < bx { ax } else { bx }) <= T::zero() {
return true;
}
if ay == by {
continue;
}
let lx = ax + (((bx - ax) * -ay) / (by - ay));
if lx == T::zero() {
// point on edge
return true;
}
if lx > T::zero() {
depth += 1;
}
if ay == T::zero() && lup && by > ay {
// hit vertex, both up
depth -= 1;
}
if ay == T::zero() && !lup && by < ay {
// hit vertex, both down
depth -= 1;
}
lup = by > ay;
}
(depth & 1) == 1
}
fn contains_line_segment(&self, line_segment: &LineSegment<T>) -> bool {
/* In case at least one of the points is not contained by the polygon, the line cannot lie
* inside of the polygon in its entirety.
*/
if !self.contains_point(&line_segment.start) || !self.contains_point(&line_segment.end) {
return false;
}
/* Both end-points are inside the polygon. */
/* In case the an endpoint of the line segment is equal to a corner of the polygon, it's
* not enough to merely check one edge, since if the corner is reflex, the segment may
* still be inside, eventhough its similar to the outwards pointing normal of one edge, but
* may be to the inside of the other edge.
*/
let mut start_looks_inside = false;
let mut end_looks_inside = false;
/* Helper function that checks if a point p, when starting from the given corner c is in a
* direction so that considering both edges that are connected to c, the point is in the
* direction of the inside of the polygon.
*/
let corner_vec_pointing_inside = |p: Vec2<T>, c: usize| {
let prev = (c + self.corners.len() - 1) % self.corners.len();
let next = (c + 1) % self.corners.len();
let edge_angle =
math::triplet_angle(self.corners[prev], self.corners[c], self.corners[next]);
let vec_angle = math::triplet_angle(self.corners[prev], self.corners[c], p);
vec_angle == T::zero() || vec_angle >= edge_angle
};
for c in 0..self.corners.len() {
if line_segment.start == self.corners[c] {
start_looks_inside = corner_vec_pointing_inside(line_segment.end, c);
if !start_looks_inside {
return false;
}
}
if line_segment.end == self.corners[c] {
end_looks_inside = corner_vec_pointing_inside(line_segment.start, c);
if !end_looks_inside {
return false;
}
}
}
if start_looks_inside && end_looks_inside {
return true;
}
/* Check the intersections of the line segment with all polygon edges and see if it is
* piercing through any of them.
*/
for c in 0..self.corners.len() {
let next = (c + 1) % self.corners.len();
let current_edge = LineSegment::new(self.corners[c], self.corners[next]);
if LineSegment::intersect(&line_segment, ¤t_edge) {
let orientation_start = math::triplet_orientation(
current_edge.start,
current_edge.end,
line_segment.start,
);
let orientation_end = math::triplet_orientation(
current_edge.start,
current_edge.end,
line_segment.end,
);
match (orientation_start, orientation_end) {
/* If at least one of the points is on the edge, make sure, the line points
* inside of the polygon, not to the outside.
*/
(TripletOrientation::Collinear, o) => {
if !start_looks_inside && o == TripletOrientation::Clockwise {
return false;
}
}
(o, TripletOrientation::Collinear) => {
if !end_looks_inside && o == TripletOrientation::Clockwise {
return false;
}
}
/* Start and endpoint are on different sides of the edge, therefore the line
* must be partially outside.
*/
_ => return false,
}
}
}
true
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn polygon_contains() {
let polygon = Polygon::new(vec![
Vec2::new(0., 0.),
Vec2::new(-1., 1.),
Vec2::new(0., 2.),
Vec2::new(1., 3.),
Vec2::new(3., 1.5),
Vec2::new(2., 0.),
Vec2::new(1., 1.),
]);
assert!(!polygon.contains_point(&Vec2::new(1., -2.)));
assert!(!polygon.contains_point(&Vec2::new(-1., 0.5)));
assert!(polygon.contains_point(&Vec2::new(0., 0.5)));
assert!(polygon.contains_point(&Vec2::new(0.5, 1.)));
assert!(polygon.contains_point(&Vec2::new(0.5, 1.5)));
assert!(!polygon.contains_point(&Vec2::new(-2., 1.9)));
assert!(!polygon.contains_point(&Vec2::new(0., 3.)));
assert!(polygon.contains_point(&Vec2::new(1., 3.)));
}
#[test]
fn contains_line_segment() {
let polygon = Polygon::new(vec![
Vec2::new(0., 0.),
Vec2::new(0., 4.5),
Vec2::new(6.5, 4.5),
Vec2::new(5.5, 0.),
Vec2::new(5.5, 3.),
Vec2::new(1.5, 3.),
Vec2::new(1.5, 1.),
Vec2::new(2., 0.5),
Vec2::new(4., 2.),
Vec2::new(4., 0.),
]);
/* NOTE: From now on, inside means inside the polygon, but might be on an edge or on a
* corner point, really inside means inside and not on an edge.
*/
// Start point really inside, end point really inside. Line not completely inside.
assert!(!polygon
.contains_line_segment(&LineSegment::new(Vec2::new(2.5, 0.5), Vec2::new(0.5, 2.5))));
// Start point on edge, end point on corner, line completely outside.
assert!(!polygon
.contains_line_segment(&LineSegment::new(Vec2::new(1.5, 2.), Vec2::new(4., 2.))));
// Start point on edge, end point on edge, line inside.
assert!(polygon
.contains_line_segment(&LineSegment::new(Vec2::new(3.5, 3.), Vec2::new(3.5, 4.5))));
// Start point on corner, end point on corner, line inside.
assert!(polygon
.contains_line_segment(&LineSegment::new(Vec2::new(5.5, 3.), Vec2::new(6.5, 4.5))));
// Start point really inside, end point on edge. Line not inside.
assert!(!polygon
.contains_line_segment(&LineSegment::new(Vec2::new(3.5, 0.5), Vec2::new(5.5, 0.5))));
// Start point and endpoint outside. Line completely outside.
assert!(!polygon
.contains_line_segment(&LineSegment::new(Vec2::new(7.0, 0.), Vec2::new(7.5, 1.))));
// Start point on vertex, pointing in same dir as one of the adjacent edge normals,
// completely inside.
assert!(
polygon.contains_line_segment(&LineSegment::new(Vec2::new(2., 0.5), Vec2::new(4., 0.)))
);
// Start and end point on vertex, not pointing in the dir of adjacent edge normals,
// not completely inside.
assert!(
!polygon.contains_line_segment(&LineSegment::new(Vec2::new(4., 2.), Vec2::new(0., 0.)))
);
}
#[test]
fn polygon_union() {
let first = Polygon::new(vec![
Vec2::new(-2., 1.),
Vec2::new(-0.5, 2.5),
Vec2::new(2., 2.),
Vec2::new(0.5, 1.5),
Vec2::new(1., 0.),
Vec2::new(-0.5, 1.),
]);
let second = Polygon::new(vec![
Vec2::new(0., 0.),
Vec2::new(-2., 2.),
Vec2::new(3., 2.),
Vec2::new(1.5, 0.),
]);
let union = first.unite(second);
assert_eq!(union.len(), 1);
let union = &union[0];
println!("Union of the two polygons: {:?}", union);
assert_eq!(union.corners.len(), 11);
assert!(union
.corners
.iter()
.find(|&p| p.x == 0. && p.y == 0.)
.is_some());
}
}
|