1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
use super::{LineSegment, Polygon, Vec2};
use nalgebra::Scalar;
use std::cmp::{Ordering, PartialOrd};
struct Node<T: Scalar + Copy> {
pub vec: Vec2<T>,
pub adjacent: Vec<Vec2<T>>,
}
/// An undirected graph, that is optimised for polygon edge operations. Since edges of a polygon
/// are an undirected graph, this structure also holds both directions. This makes it rather space
/// inefficient, but makes edge operations rather swift. ß
pub struct PolygonGraph<T: Scalar + Copy + PartialOrd> {
/// The nodes of the graph, together with their adjacency list.
nodes: Vec<Node<T>>,
}
// Helper functions to find nodes/vecs in sorted fields, so It doesn't always have to be written
// out.
#[inline]
fn find_vec2<T: Scalar + Copy + PartialOrd>(
field: &[Vec2<T>],
lookup: &Vec2<T>,
) -> Result<usize, usize> {
field.binary_search_by(|n| n.partial_cmp(lookup).unwrap_or(Ordering::Greater))
}
#[inline]
fn find_node<T: Scalar + Copy + PartialOrd>(
field: &[Node<T>],
lookup: &Vec2<T>,
) -> Result<usize, usize> {
field.binary_search_by(|n| n.vec.partial_cmp(lookup).unwrap_or(Ordering::Greater))
}
impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> {
/// Create a new, empty polygon graph.
pub fn new() -> Self {
Self { nodes: Vec::new() }
}
/// Count the number of edges in the graph. Internally, for each two connected points there are
/// two edges, but this returns the amount of polygon edges.
pub fn num_edges(&self) -> usize {
let mut num_edges = 0;
for node in &self.nodes {
for _ in &node.adjacent {
num_edges += 1;
}
}
assert!(num_edges % 2 == 0);
num_edges / 2
}
/// Count the number of nodes in this graph. If this graph consists of multiple polygons, this
/// can be different than the amount of corners, since corners with the same position are only
/// counted once.
pub fn num_nodes(&self) -> usize {
self.nodes.len()
}
/// Checks if there is an edge between the two given vectors. Is commutative in respect to the
/// two arguments.
pub fn has_edge(&self, from: &Vec2<T>, to: &Vec2<T>) -> bool {
// Binary search the starting and then the end node.
if let Ok(from) = find_node(&self.nodes, from) {
if let Ok(_) = find_vec2(&self.nodes[from].adjacent, to) {
true
} else {
false
}
} else {
false
}
}
// Helper function to add the edge into the internal graph representation for one side only.
// Since to the outside the graph should always be undirected, this must be private.
fn add_edge_onesided(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool {
match find_node(&self.nodes, from) {
Ok(pos) => match find_vec2(&self.nodes[pos].adjacent, to) {
Ok(_) => return false,
Err(i) => self.nodes[pos].adjacent.insert(i, *to),
},
Err(pos) => self.nodes.insert(
pos,
Node {
vec: *from,
adjacent: vec![*to],
},
),
}
true
}
/// Add an edge between the given vectors. If the edge already exists, it does nothing and
/// returns false, otherwise it returns true after addition.
pub fn add_edge(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool {
if !self.add_edge_onesided(from, to) {
return false;
}
let back_edge_succ = self.add_edge_onesided(to, from);
assert!(back_edge_succ);
true
}
// Helper function to remove the edge in the internal graph representation for one side only.
// Since to the outside the graph should always be undirected, this must be private.
fn remove_edge_onesided(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool {
if let Ok(from) = find_node(&self.nodes, from) {
if let Ok(to) = find_vec2(&self.nodes[from].adjacent, to) {
// Remove the edge from the vector.
self.nodes[from].adjacent.remove(to);
// If the node has no adjacent nodes anymore, remove it entirely.
if self.nodes[from].adjacent.is_empty() {
self.nodes.remove(from);
}
true
} else {
false
}
} else {
false
}
}
/// Remove an edge between the given vectors. If there is no edge between them, it does nothing
/// and returns false, otherwise it returns true after deletion.
pub fn remove_edge(&mut self, from: &Vec2<T>, to: &Vec2<T>) -> bool {
if !self.remove_edge_onesided(from, to) {
return false;
}
let back_edge_succ = self.remove_edge_onesided(to, from);
assert!(back_edge_succ);
true
}
/// Constructs a new PolygonGraph from the provided polygon. Adds a node for every corner and
/// an edge to all connected corners (which should be exactly two, for regular polygons)
pub fn from_polygon(polygon: &Polygon<T>) -> Self {
let mut graph = PolygonGraph {
nodes: Vec::with_capacity(polygon.corners.len()),
};
graph.add_all(polygon);
graph
}
/// Add all edges of the provided polygon into the graph. Requires roughly double as much space
/// as the normal polygon.
pub fn add_all(&mut self, polygon: &Polygon<T>) {
for i in 0..polygon.corners.len() {
self.add_edge(
&polygon.corners[i],
&polygon.corners[(i + 1) % polygon.corners.len()],
);
}
}
/// Calculates all points where the graph edges intersect with one another. It then adds them
/// into the adjacency list such that the intersection point lies between the nodes of the
/// lines.
pub fn intersect_self(&mut self) {
// Find all intersections with all other edges.
for node in &self.nodes {
for to in &node.adjacent {
let current_segment = LineSegment::new(node.vec, *to);
for node in &self.nodes {
for to in &node.adjacent {
let compare_segment = LineSegment::new(node.vec, *to);
if current_segment.eq_ignore_dir(&compare_segment) {
continue;
}
}
}
}
}
}
/// Finds the minimal polygon that could hold this graph together, i.e. could contain the
/// entire graph, but with the minimal amount of space. It may however still contain extra
/// corner points, meaning an extra edge for three collinear points on this edge, that can be
/// cleaned up.
pub fn bounding_polygon(&self) -> Polygon<T> {
unimplemented!()
}
}
impl<T: Scalar + Copy + PartialOrd> Default for PolygonGraph<T> {
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn from_polygon() {
let a = Vec2::new(0., 0.);
let b = Vec2::new(0., 1.);
let c = Vec2::new(0.5, 1.);
let triangle = Polygon::new(vec![a, b, c]);
let graph = PolygonGraph::from_polygon(&triangle);
assert_eq!(graph.num_edges(), 3);
assert!(graph.has_edge(&a, &b));
assert!(graph.has_edge(&b, &a));
assert!(graph.has_edge(&a, &c));
assert!(graph.has_edge(&c, &a));
assert!(graph.has_edge(&b, &c));
assert!(graph.has_edge(&c, &b));
}
#[test]
fn add_all() {
let top_left = Vec2::new(0., 0.);
let top_right = Vec2::new(1., 0.);
let bot_left = Vec2::new(0., 1.);
let bot_right = Vec2::new(1., 1.);
let triangle = Polygon::new(vec![top_left, bot_right, top_right]);
let square = Polygon::new(vec![bot_left, bot_right, top_right, top_left]);
let mut graph = PolygonGraph::new();
graph.add_all(&triangle);
graph.add_all(&square);
assert_eq!(graph.num_edges(), 5);
assert_eq!(graph.num_nodes(), 4);
assert!(graph.has_edge(&top_left, &top_right));
assert!(graph.has_edge(&top_right, &top_left));
assert!(graph.has_edge(&top_left, &bot_left));
assert!(graph.has_edge(&bot_left, &top_left));
assert!(graph.has_edge(&bot_left, &bot_right));
assert!(graph.has_edge(&bot_right, &bot_left));
assert!(graph.has_edge(&bot_right, &top_right));
assert!(graph.has_edge(&top_right, &bot_right));
assert!(graph.has_edge(&top_left, &bot_right));
assert!(graph.has_edge(&bot_right, &top_left));
}
#[test]
fn intersect_self() {
let first = Polygon::new(vec![
Vec2::new(0., 0.),
Vec2::new(0., 2.),
Vec2::new(2., 2.),
Vec2::new(3., 1.),
Vec2::new(2., 0.),
]);
let second = Polygon::new(vec![
Vec2::new(2.5, -0.5),
Vec2::new(0., 2.),
Vec2::new(2., 2.),
Vec2::new(2., 0.5),
Vec2::new(2.5, 0.),
]);
let mut graph = PolygonGraph::from_polygon(&first);
graph.add_all(&second);
graph.intersect_self();
assert_eq!(graph.num_nodes(), 9);
assert_eq!(graph.num_edges(), 12);
assert!(graph.has_edge(&Vec2::new(2., 0.), &Vec2::new(2.25, 0.25)));
assert!(graph.has_edge(&Vec2::new(3., 1.), &Vec2::new(2.25, 0.25)));
assert!(!graph.has_edge(&Vec2::new(2., 0.), &Vec2::new(3., 1.)));
assert!(graph.has_edge(&Vec2::new(0., 2.), &Vec2::new(2., 2.)));
assert!(graph.has_edge(&Vec2::new(0., 2.), &Vec2::new(2., 0.)));
assert!(!graph.has_edge(&Vec2::new(0., 2.), &Vec2::new(2.5, -0.5)));
}
#[test]
fn bounding_polygon() {
let first = Polygon::new(vec![
Vec2::new(0., 0.),
Vec2::new(0., 2.),
Vec2::new(2., 2.),
Vec2::new(3., 1.),
Vec2::new(2., 0.),
]);
let second = Polygon::new(vec![
Vec2::new(2.5, -0.5),
Vec2::new(0., 2.),
Vec2::new(2., 2.),
Vec2::new(2., 0.5),
Vec2::new(2.5, 0.),
]);
let mut graph = PolygonGraph::from_polygon(&first);
graph.add_all(&second);
let bounding = graph.bounding_polygon();
let num_corners = 8;
assert_eq!(bounding.corners.len(), num_corners);
// Run around the polygon to see if it was constructed correctly.
let start_i = bounding
.corners
.iter()
.position(|&x| x == Vec2::new(0., 0.))
.expect("Starting vector does not exist in polygon.");
assert_eq!(
bounding.corners[(start_i + 1) % num_corners],
Vec2::new(0., 2.)
);
assert_eq!(
bounding.corners[(start_i + 2) % num_corners],
Vec2::new(2., 2.)
);
assert_eq!(
bounding.corners[(start_i + 3) % num_corners],
Vec2::new(3., 1.)
);
assert_eq!(
bounding.corners[(start_i + 4) % num_corners],
Vec2::new(2.25, 0.25)
);
assert_eq!(
bounding.corners[(start_i + 5) % num_corners],
Vec2::new(2.5, 0.0)
);
assert_eq!(
bounding.corners[(start_i + 6) % num_corners],
Vec2::new(2.5, -0.5)
);
assert_eq!(
bounding.corners[(start_i + 7) % num_corners],
Vec2::new(2., 0.)
);
}
}
|