diff options
| author | Arne Dußin | 2020-11-23 23:38:52 +0100 |
|---|---|---|
| committer | Arne Dußin | 2020-11-23 23:38:52 +0100 |
| commit | e62275d90d3ebf379e8ab268cb77d8eaf6d1cf07 (patch) | |
| tree | 5f8aee175d048e40b8b496157816177e0597e0f9 /src/math | |
| parent | bff1955c38480f2dffd0a10c16ef46dc11320752 (diff) | |
| parent | 3b0c99351da92410bbfaba233e40376b767cb64e (diff) | |
| download | graf_karto-e62275d90d3ebf379e8ab268cb77d8eaf6d1cf07.tar.gz graf_karto-e62275d90d3ebf379e8ab268cb77d8eaf6d1cf07.zip | |
Merge branch 'triangulation' into polygon-rooms
Diffstat (limited to 'src/math')
| -rw-r--r-- | src/math/line_segment.rs | 111 | ||||
| -rw-r--r-- | src/math/mod.rs | 14 | ||||
| -rw-r--r-- | src/math/polygon.rs | 170 | ||||
| -rw-r--r-- | src/math/polygon/mod.rs | 341 | ||||
| -rw-r--r-- | src/math/polygon/polygon_graph.rs (renamed from src/math/polygon_graph.rs) | 17 | ||||
| -rw-r--r-- | src/math/polygon/triangulate.rs | 149 | ||||
| -rw-r--r-- | src/math/rect.rs | 112 | ||||
| -rw-r--r-- | src/math/triangle.rs | 251 |
8 files changed, 825 insertions, 340 deletions
diff --git a/src/math/line_segment.rs b/src/math/line_segment.rs index e6ca70f..94f58b2 100644 --- a/src/math/line_segment.rs +++ b/src/math/line_segment.rs @@ -1,4 +1,4 @@ -use super::{Rect, Vec2}; +use super::{Rect, Surface, TripletOrientation, Vec2}; use alga::general::{ClosedDiv, ClosedMul, ClosedSub}; use nalgebra::{RealField, Scalar}; use num_traits::Zero; @@ -50,10 +50,10 @@ impl<T: Scalar + Copy> LineSegment<T> { */ // Cache the necessary orientations. - let ls1_ls2start_orientation = triplet_orientation(ls1.start, ls1.end, ls2.start); - let ls1_ls2end_orientation = triplet_orientation(ls1.start, ls1.end, ls2.end); - let ls2_ls1start_orientation = triplet_orientation(ls2.start, ls2.end, ls1.start); - let ls2_ls1end_orientation = triplet_orientation(ls2.start, ls2.end, ls1.end); + let ls1_ls2start_orientation = super::triplet_orientation(ls1.start, ls1.end, ls2.start); + let ls1_ls2end_orientation = super::triplet_orientation(ls1.start, ls1.end, ls2.end); + let ls2_ls1start_orientation = super::triplet_orientation(ls2.start, ls2.end, ls1.start); + let ls2_ls1end_orientation = super::triplet_orientation(ls2.start, ls2.end, ls1.end); // Check for the first case that wase described (general case). if ls1_ls2start_orientation != ls1_ls2end_orientation @@ -118,8 +118,8 @@ impl<T: Scalar + Copy> LineSegment<T> { * the segments. We know it's on the lines, so checking with the lines bounding box is * faster than checking where on the line exactly it would be. */ - if Rect::bounding_rect(line_a.start, line_a.end).contains(out) - && Rect::bounding_rect(line_b.start, line_b.end).contains(out) + if Rect::bounding_rect(line_a.start, line_a.end).contains_point(&out) + && Rect::bounding_rect(line_b.start, line_b.end).contains_point(&out) { Some(out) } else { @@ -139,7 +139,7 @@ impl<T: Scalar + Copy> LineSegment<T> { assert_eq!( split_points .iter() - .find(|&p| triplet_orientation(self.start, self.end, *p) + .find(|&p| super::triplet_orientation(self.start, self.end, *p) != TripletOrientation::Collinear), None ); @@ -173,76 +173,9 @@ impl<T: Scalar + Copy> LineSegment<T> { } } -#[derive(PartialEq, Eq)] -pub(crate) enum TripletOrientation { - Clockwise, - Counterclockwise, - Collinear, -} - -/// Helper function to determine which direction one would turn to traverse from the first point -/// over the second to the third point. The third option is collinear, in which case the three points -/// are on the same line. -pub(crate) fn triplet_orientation<T>(a: Vec2<T>, b: Vec2<T>, c: Vec2<T>) -> TripletOrientation -where - T: Scalar + Copy + ClosedSub + ClosedMul + PartialOrd + Zero, -{ - /* Check the slopes of the vector from a to b and b to c. If the slope of ab is greater than - * that of bc, the rotation is clockwise. If ab is smaller than bc it's counterclockwise. If - * they are the same it follows that the three points are collinear. - */ - match (b.y - a.y) * (c.x - b.x) - (b.x - a.x) * (c.y - b.y) { - q if q > T::zero() => TripletOrientation::Counterclockwise, - q if q < T::zero() => TripletOrientation::Clockwise, - _ => TripletOrientation::Collinear, - } -} - -/// Calculate the angle between three points. Guaranteed to have 0 <= angle < 2Pi. The angle is -/// calculated as the angle between a line from a to b and then from b to c, increasing -/// counterclockwise. -/// -/// # Panics -/// If the length from a to b or the length from b to c is zero. -pub(crate) fn triplet_angle<T>(a: Vec2<T>, b: Vec2<T>, c: Vec2<T>) -> T -where - T: Scalar + Copy + ClosedSub + RealField + Zero, -{ - assert!(a != b); - assert!(b != c); - - // Handle the extreme 0 and 180 degree cases - let orientation = triplet_orientation(a, b, c); - if orientation == TripletOrientation::Collinear { - if LineSegment::new(a, b).contains_collinear(c) - || LineSegment::new(b, c).contains_collinear(a) - { - return T::zero(); - } else { - return T::pi(); - } - } - - // Calculate the vectors out of the points - let ba = a - b; - let bc = c - b; - - // Calculate the angle between 0 and Pi. - let angle = ((ba * bc) / (ba.length() * bc.length())).acos(); - - // Make angle into a full circle angle by looking at the orientation of the triplet. - let angle = match orientation { - TripletOrientation::Counterclockwise => T::pi() + (T::pi() - angle), - _ => angle, - }; - - angle -} - #[cfg(test)] mod test { use super::*; - use std::f64::consts::PI; #[test] fn contains_collinear() { @@ -256,32 +189,4 @@ mod test { assert!(!segment.contains_collinear(Vec2::new(3., 3.))); assert!(!segment.contains_collinear(Vec2::new(-1., 0.))); } - - #[test] - fn triplet_angle() { - assert_eq!( - super::triplet_angle(Vec2::new(0., 0.), Vec2::new(0., -1.), Vec2::new(-1., -1.)), - 1.5 * PI - ); - assert_eq!( - super::triplet_angle(Vec2::new(2., 2.), Vec2::new(0., 0.), Vec2::new(-1., -1.)), - PI - ); - assert_eq!( - super::triplet_angle(Vec2::new(3., 1.), Vec2::new(0., 0.), Vec2::new(6., 2.)), - 0. - ); - assert_eq!( - super::triplet_angle(Vec2::new(3., 1.), Vec2::new(0., 0.), Vec2::new(-6., -2.)), - PI - ); - assert_eq!( - super::triplet_angle(Vec2::new(0., 1.), Vec2::new(0., 2.), Vec2::new(-3., 2.)), - 0.5 * PI - ); - assert_eq!( - super::triplet_angle(Vec2::new(3., 1.), Vec2::new(2., 2.), Vec2::new(0., 2.)), - 0.75 * PI - ); - } } diff --git a/src/math/mod.rs b/src/math/mod.rs index 0b591d7..6f83c98 100644 --- a/src/math/mod.rs +++ b/src/math/mod.rs @@ -1,17 +1,27 @@ pub mod line_segment; pub mod polygon; -pub mod polygon_graph; pub mod rect; +pub mod triangle; pub mod vec2; pub use self::line_segment::*; pub use self::polygon::*; -pub use self::polygon_graph::*; pub use self::rect::*; +pub use self::triangle::*; pub use self::vec2::*; +use nalgebra::Scalar; use std::cmp::Ordering; +/// Trait that describes an area in the vector space on the field of T +pub trait Surface<T: Scalar + Copy> { + /// Checks if a point lies on this surface. + fn contains_point(&self, point: &Vec2<T>) -> bool; + + /// Checks if a line segment is entirely contained by this surface. + fn contains_line_segment(&self, line_segment: &LineSegment<T>) -> bool; +} + /// Round a floating point number to the nearest step given by the step argument. For instance, if /// the step is 0.5, then all numbers from 0.0 to 0.24999... will be 0., while all numbers from /// 0.25 to 0.74999... will be 0.5 and so on. diff --git a/src/math/polygon.rs b/src/math/polygon.rs deleted file mode 100644 index 5cf8104..0000000 --- a/src/math/polygon.rs +++ /dev/null @@ -1,170 +0,0 @@ -use super::{PolygonGraph, Vec2}; -use nalgebra::{ClosedDiv, ClosedMul, ClosedSub, RealField, Scalar}; -use num_traits::Zero; -use serde::{Deserialize, Serialize}; -use std::ops::Neg; - -#[derive(Debug, Deserialize, Serialize, PartialEq)] -// TODO: Support polygons with holes -pub struct Polygon<T: Scalar + Copy> { - pub corners: Vec<Vec2<T>>, -} - -impl<T: Scalar + Copy> Polygon<T> { - pub fn new(corners: Vec<Vec2<T>>) -> Self { - Self { corners } - } - - /// Check whether a point is inside a polygon or not. If a point lies on an edge, it also - /// counts as inside the polygon. - pub fn contains_point(&self, p: Vec2<T>) -> bool - where - T: Zero + ClosedSub + ClosedMul + ClosedDiv + Neg<Output = T> + PartialOrd, - { - let n = self.corners.len(); - - let a = self.corners[n - 1]; - let mut b = self.corners[n - 2]; - let mut ax; - let mut ay = a.y - p.y; - let mut bx = b.x - p.x; - let mut by = b.y - p.y; - - let mut lup = by > ay; - for i in 0..n { - // ax = bx; - ay = by; - b = self.corners[i]; - bx = b.x - p.x; - by = b.y - p.y; - - if ay == by { - continue; - } - lup = by > ay; - } - - let mut depth = 0; - for i in 0..n { - ax = bx; - ay = by; - let b = &self.corners[i]; - bx = b.x - p.x; - by = b.y - p.y; - - if ay < T::zero() && by < T::zero() { - // both "up" or both "down" - continue; - } - if ay > T::zero() && by > T::zero() { - // both "up" or both "down" - continue; - } - if ax < T::zero() && bx < T::zero() { - // both points on the left - continue; - } - - if ay == by && (if ax < bx { ax } else { bx }) <= T::zero() { - return true; - } - if ay == by { - continue; - } - - let lx = ax + (((bx - ax) * -ay) / (by - ay)); - if lx == T::zero() { - // point on edge - return true; - } - if lx > T::zero() { - depth += 1; - } - if ay == T::zero() && lup && by > ay { - // hit vertex, both up - depth -= 1; - } - if ay == T::zero() && !lup && by < ay { - // hit vertex, both down - depth -= 1; - } - - lup = by > ay; - } - - (depth & 1) == 1 - } - - /// Join this polygon with another, ensuring the area of the two stays the same, but the - /// overlap is not doubled, but instead joined into one. - /// Returns the Polygons themselves, if there is no overlap - pub fn unite(self, other: Polygon<T>) -> Vec<Polygon<T>> - where - T: RealField, - { - let mut graph = PolygonGraph::from_polygon(&self); - graph.add_all(&other); - - // TODO: Make bounding box support multiple polygons - vec![graph.bounding_polygon()] - } -} - -#[cfg(test)] -mod test { - use super::*; - - #[test] - fn polygon_contains() { - let polygon = Polygon::new(vec![ - Vec2::new(0., 0.), - Vec2::new(-1., 1.), - Vec2::new(0., 2.), - Vec2::new(1., 3.), - Vec2::new(3., 1.5), - Vec2::new(2., 0.), - Vec2::new(1., 1.), - ]); - - assert!(!polygon.contains_point(Vec2::new(1., -2.))); - assert!(!polygon.contains_point(Vec2::new(-1., 0.5))); - assert!(polygon.contains_point(Vec2::new(0., 0.5))); - assert!(polygon.contains_point(Vec2::new(0.5, 1.))); - assert!(polygon.contains_point(Vec2::new(0.5, 1.5))); - assert!(!polygon.contains_point(Vec2::new(-2., 1.9))); - assert!(!polygon.contains_point(Vec2::new(0., 3.))); - assert!(polygon.contains_point(Vec2::new(1., 3.))); - } - - #[test] - fn polygon_union() { - let first = Polygon::new(vec![ - Vec2::new(-2., 1.), - Vec2::new(-0.5, 2.5), - Vec2::new(2., 2.), - Vec2::new(0.5, 1.5), - Vec2::new(1., 0.), - Vec2::new(-0.5, 1.), - ]); - - let second = Polygon::new(vec![ - Vec2::new(0., 0.), - Vec2::new(-2., 2.), - Vec2::new(3., 2.), - Vec2::new(1.5, 0.), - ]); - - let union = first.unite(second); - assert_eq!(union.len(), 1); - let union = &union[0]; - - println!("Union of the two polygons: {:?}", union); - - assert_eq!(union.corners.len(), 11); - assert!(union - .corners - .iter() - .find(|&p| p.x == 0. && p.y == 0.) - .is_some()); - } -} diff --git a/src/math/polygon/mod.rs b/src/math/polygon/mod.rs new file mode 100644 index 0000000..cda1f2a --- /dev/null +++ b/src/math/polygon/mod.rs @@ -0,0 +1,341 @@ +//! Contains functions and structures to help with operations on polygons. + +pub mod polygon_graph; +pub mod triangulate; + +pub use polygon_graph::*; +pub use triangulate::*; + +use super::{LineSegment, Surface, TripletOrientation, Vec2}; +use crate::math; +use nalgebra::{ClosedDiv, ClosedMul, ClosedSub, RealField, Scalar}; +use num_traits::Zero; +use serde::{Deserialize, Serialize}; +use std::ops::Neg; + +#[derive(Debug, Deserialize, Serialize)] +// TODO: Support polygons with holes +pub struct Polygon<T: Scalar + Copy> { + pub corners: Vec<Vec2<T>>, +} + +impl<T: Scalar + Copy> Polygon<T> { + pub fn new(corners: Vec<Vec2<T>>) -> Self { + Self { corners } + } + + /// Check whether a point is inside a polygon or not. If a point lies on an edge, it also + /// counts as inside the polygon. + + /// Join this polygon with another, ensuring the area of the two stays the same, but the + /// overlap is not doubled, but instead joined into one. + /// Returns the Polygons themselves, if there is no overlap + pub fn unite(self, other: Polygon<T>) -> Vec<Polygon<T>> + where + T: RealField, + { + let mut graph = PolygonGraph::from_polygon(&self); + graph.add_all(&other); + + // TODO: Make bounding box support multiple polygons + vec![graph.bounding_polygon()] + } +} + +impl< + T: Scalar + + Copy + + ClosedSub + + ClosedMul + + ClosedDiv + + Neg<Output = T> + + PartialOrd + + RealField + + Zero, + > Surface<T> for Polygon<T> +{ + fn contains_point(&self, p: &Vec2<T>) -> bool { + let n = self.corners.len(); + + let a = self.corners[n - 1]; + let mut b = self.corners[n - 2]; + let mut ax; + let mut ay = a.y - p.y; + let mut bx = b.x - p.x; + let mut by = b.y - p.y; + + let mut lup = by > ay; + for i in 0..n { + // ax = bx; + ay = by; + b = self.corners[i]; + bx = b.x - p.x; + by = b.y - p.y; + + if ay == by { + continue; + } + lup = by > ay; + } + + let mut depth = 0; + for i in 0..n { + ax = bx; + ay = by; + let b = &self.corners[i]; + bx = b.x - p.x; + by = b.y - p.y; + + if ay < T::zero() && by < T::zero() { + // both "up" or both "down" + continue; + } + if ay > T::zero() && by > T::zero() { + // both "up" or both "down" + continue; + } + if ax < T::zero() && bx < T::zero() { + // both points on the left + continue; + } + + if ay == by && (if ax < bx { ax } else { bx }) <= T::zero() { + return true; + } + if ay == by { + continue; + } + + let lx = ax + (((bx - ax) * -ay) / (by - ay)); + if lx == T::zero() { + // point on edge + return true; + } + if lx > T::zero() { + depth += 1; + } + if ay == T::zero() && lup && by > ay { + // hit vertex, both up + depth -= 1; + } + if ay == T::zero() && !lup && by < ay { + // hit vertex, both down + depth -= 1; + } + + lup = by > ay; + } + + (depth & 1) == 1 + } + + fn contains_line_segment(&self, line_segment: &LineSegment<T>) -> bool { + /* In case at least one of the points is not contained by the polygon, the line cannot lie + * inside of the polygon in its entirety. + */ + if !self.contains_point(&line_segment.start) || !self.contains_point(&line_segment.end) { + return false; + } + + /* Both end-points are inside the polygon. */ + + /* In case the an endpoint of the line segment is equal to a corner of the polygon, it's + * not enough to merely check one edge, since if the corner is reflex, the segment may + * still be inside, eventhough its similar to the outwards pointing normal of one edge, but + * may be to the inside of the other edge. + */ + let mut start_looks_inside = false; + let mut end_looks_inside = false; + /* Helper function that checks if a point p, when starting from the given corner c is in a + * direction so that considering both edges that are connected to c, the point is in the + * direction of the inside of the polygon. + */ + let corner_vec_pointing_inside = |p: Vec2<T>, c: usize| { + let prev = (c + self.corners.len() - 1) % self.corners.len(); + let next = (c + 1) % self.corners.len(); + + let edge_angle = + math::triplet_angle(self.corners[prev], self.corners[c], self.corners[next]); + let vec_angle = math::triplet_angle(self.corners[prev], self.corners[c], p); + + vec_angle == T::zero() || vec_angle >= edge_angle + }; + + for c in 0..self.corners.len() { + if line_segment.start == self.corners[c] { + start_looks_inside = corner_vec_pointing_inside(line_segment.end, c); + if !start_looks_inside { + return false; + } + } + if line_segment.end == self.corners[c] { + end_looks_inside = corner_vec_pointing_inside(line_segment.start, c); + if !end_looks_inside { + return false; + } + } + } + + if start_looks_inside && end_looks_inside { + return true; + } + + /* Check the intersections of the line segment with all polygon edges and see if it is + * piercing through any of them. + */ + for c in 0..self.corners.len() { + let next = (c + 1) % self.corners.len(); + + let current_edge = LineSegment::new(self.corners[c], self.corners[next]); + + if LineSegment::intersect(&line_segment, ¤t_edge) { + let orientation_start = math::triplet_orientation( + current_edge.start, + current_edge.end, + line_segment.start, + ); + let orientation_end = math::triplet_orientation( + current_edge.start, + current_edge.end, + line_segment.end, + ); + match (orientation_start, orientation_end) { + /* If at least one of the points is on the edge, make sure, the line points + * inside of the polygon, not to the outside. + */ + (TripletOrientation::Collinear, o) => { + if !start_looks_inside && o == TripletOrientation::Clockwise { + return false; + } + } + (o, TripletOrientation::Collinear) => { + if !end_looks_inside && o == TripletOrientation::Clockwise { + return false; + } + } + /* Start and endpoint are on different sides of the edge, therefore the line + * must be partially outside. + */ + _ => return false, + } + } + } + + true + } +} + +#[cfg(test)] +mod test { + use super::*; + + #[test] + fn polygon_contains() { + let polygon = Polygon::new(vec![ + Vec2::new(0., 0.), + Vec2::new(-1., 1.), + Vec2::new(0., 2.), + Vec2::new(1., 3.), + Vec2::new(3., 1.5), + Vec2::new(2., 0.), + Vec2::new(1., 1.), + ]); + + assert!(!polygon.contains_point(&Vec2::new(1., -2.))); + assert!(!polygon.contains_point(&Vec2::new(-1., 0.5))); + assert!(polygon.contains_point(&Vec2::new(0., 0.5))); + assert!(polygon.contains_point(&Vec2::new(0.5, 1.))); + assert!(polygon.contains_point(&Vec2::new(0.5, 1.5))); + assert!(!polygon.contains_point(&Vec2::new(-2., 1.9))); + assert!(!polygon.contains_point(&Vec2::new(0., 3.))); + assert!(polygon.contains_point(&Vec2::new(1., 3.))); + } + + #[test] + fn contains_line_segment() { + let polygon = Polygon::new(vec![ + Vec2::new(0., 0.), + Vec2::new(0., 4.5), + Vec2::new(6.5, 4.5), + Vec2::new(5.5, 0.), + Vec2::new(5.5, 3.), + Vec2::new(1.5, 3.), + Vec2::new(1.5, 1.), + Vec2::new(2., 0.5), + Vec2::new(4., 2.), + Vec2::new(4., 0.), + ]); + + /* NOTE: From now on, inside means inside the polygon, but might be on an edge or on a + * corner point, really inside means inside and not on an edge. + */ + + // Start point really inside, end point really inside. Line not completely inside. + assert!(!polygon + .contains_line_segment(&LineSegment::new(Vec2::new(2.5, 0.5), Vec2::new(0.5, 2.5)))); + + // Start point on edge, end point on corner, line completely outside. + assert!(!polygon + .contains_line_segment(&LineSegment::new(Vec2::new(1.5, 2.), Vec2::new(4., 2.)))); + + // Start point on edge, end point on edge, line inside. + assert!(polygon + .contains_line_segment(&LineSegment::new(Vec2::new(3.5, 3.), Vec2::new(3.5, 4.5)))); + + // Start point on corner, end point on corner, line inside. + assert!(polygon + .contains_line_segment(&LineSegment::new(Vec2::new(5.5, 3.), Vec2::new(6.5, 4.5)))); + + // Start point really inside, end point on edge. Line not inside. + assert!(!polygon + .contains_line_segment(&LineSegment::new(Vec2::new(3.5, 0.5), Vec2::new(5.5, 0.5)))); + + // Start point and endpoint outside. Line completely outside. + assert!(!polygon + .contains_line_segment(&LineSegment::new(Vec2::new(7.0, 0.), Vec2::new(7.5, 1.)))); + + // Start point on vertex, pointing in same dir as one of the adjacent edge normals, + // completely inside. + assert!( + polygon.contains_line_segment(&LineSegment::new(Vec2::new(2., 0.5), Vec2::new(4., 0.))) + ); + + // Start and end point on vertex, not pointing in the dir of adjacent edge normals, + // not completely inside. + assert!( + !polygon.contains_line_segment(&LineSegment::new(Vec2::new(4., 2.), Vec2::new(0., 0.))) + ); + } + + #[test] + fn polygon_union() { + let first = Polygon::new(vec![ + Vec2::new(-2., 1.), + Vec2::new(-0.5, 2.5), + Vec2::new(2., 2.), + Vec2::new(0.5, 1.5), + Vec2::new(1., 0.), + Vec2::new(-0.5, 1.), + ]); + + let second = Polygon::new(vec![ + Vec2::new(0., 0.), + Vec2::new(-2., 2.), + Vec2::new(3., 2.), + Vec2::new(1.5, 0.), + ]); + + let union = first.unite(second); + assert_eq!(union.len(), 1); + let union = &union[0]; + + println!("Union of the two polygons: {:?}", union); + + assert_eq!(union.corners.len(), 11); + assert!(union + .corners + .iter() + .find(|&p| p.x == 0. && p.y == 0.) + .is_some()); + } +} diff --git a/src/math/polygon_graph.rs b/src/math/polygon/polygon_graph.rs index 7721cbf..9477fbc 100644 --- a/src/math/polygon_graph.rs +++ b/src/math/polygon/polygon_graph.rs @@ -1,4 +1,5 @@ -use super::{LineSegment, Polygon, Vec2}; +use super::Polygon; +use crate::math::{self, LineSegment, Vec2}; use nalgebra::{RealField, Scalar}; use std::cmp::{Ordering, PartialOrd}; @@ -9,7 +10,7 @@ struct Node<T: Scalar + Copy> { } struct EdgeIterator<'a, T: Scalar + Copy> { - nodes: &'a Vec<Node<T>>, + nodes: &'a [Node<T>], pos: (usize, usize), } @@ -39,7 +40,7 @@ fn find_node<T: Scalar + Copy + PartialOrd>( } impl<'a, T: Scalar + Copy> EdgeIterator<'a, T> { - pub fn new(nodes: &'a Vec<Node<T>>) -> Self { + pub fn new(nodes: &'a [Node<T>]) -> Self { Self { nodes, pos: (0, 0) } } } @@ -99,11 +100,7 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> { pub fn has_edge(&self, from: &Vec2<T>, to: &Vec2<T>) -> bool { // Binary search the starting and then the end node. if let Ok(from) = find_node(&self.nodes, from) { - if let Ok(_) = find_vec2(&self.nodes[from].adjacent, to) { - true - } else { - false - } + find_vec2(&self.nodes[from].adjacent, to).is_ok() } else { false } @@ -277,8 +274,8 @@ impl<T: Scalar + Copy + PartialOrd> PolygonGraph<T> { .adjacent .iter() .max_by(|&a, &b| { - super::triplet_angle(last_vec, current_node.vec, *a) - .partial_cmp(&super::triplet_angle(last_vec, current_node.vec, *b)) + math::triplet_angle(last_vec, current_node.vec, *a) + .partial_cmp(&math::triplet_angle(last_vec, current_node.vec, *b)) .unwrap_or(Ordering::Equal) }) .expect("Adjacency list is empty. The polygon has an open edge (is broken)"); diff --git a/src/math/polygon/triangulate.rs b/src/math/polygon/triangulate.rs new file mode 100644 index 0000000..78dfa03 --- /dev/null +++ b/src/math/polygon/triangulate.rs @@ -0,0 +1,149 @@ +//! Module for turning a polygon into a number of non-overlapping triangles. + +use super::Polygon; +use crate::math::{self, LineSegment, Surface, Triangle}; +use nalgebra::{RealField, Scalar}; + +/// Type that saves the flags that match a corner in a space efficient manner. +type Flags = u8; + +/// Tells the algorithm that this corner of the polygon is an ear. An ear means the adjacent corners +/// form a triangle with this corner of which the area is entirely contained by the polygon itself. +const FLAG_EAR: Flags = 0b0000_0001; +/// Tells the algorithm that this corner is convex, meaning its internal angle is less than Pi. +/// Useful, because this is a necessary condition for earness. False if the vertex is reflex. +// TODO: The convex flag is a remnant from the previous algorithm, but currently it's not being +// used. Consider removing it entirely. +const FLAG_CONVEX: Flags = 0b0000_0010; + +fn flag_corner<T: Scalar + Copy>(polygon: &Polygon<T>, corner: usize) -> Flags +where + T: RealField, +{ + // First, check if it is convex. If it is not, it can also not be an ear. + let prev = (corner + polygon.corners.len() - 1) % polygon.corners.len(); + let next = (corner + 1) % polygon.corners.len(); + + /* Since the angle is also in counterclockwise direction, like the polygon itself, the corner + * is convex if and only if the angle is **not**. + */ + if math::triplet_angle( + polygon.corners[prev], + polygon.corners[corner], + polygon.corners[next], + ) < T::pi() + { + // The corner is reflex. + return 0b0; + } + + // The corner is convex, check if it is also an ear. + if polygon.contains_line_segment(&LineSegment::new( + polygon.corners[prev], + polygon.corners[next], + )) { + // Corner is an ear. + FLAG_EAR | FLAG_CONVEX + } else { + // Corner is not an ear. + FLAG_CONVEX + } +} + +/// Uses earclipping algorithm (see https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf) +/// to find an explanation of what exactly is happening. +/// Currently only handles simple polygons, but once the polygon struct supports holes must be +/// extended to also support those. +pub fn triangulate<T: Scalar + Copy>(mut polygon: Polygon<T>) -> Vec<Triangle<T>> +where + T: RealField, +{ + assert!(polygon.corners.len() >= 3); + /* Information about the corner of the polygon. See the flags constant for information about + * what the bits mean. + */ + let mut flags = Vec::with_capacity(polygon.corners.len()); + for c in 0..polygon.corners.len() { + flags.push(flag_corner(&polygon, c)); + } + + let mut triangles = Vec::with_capacity(polygon.corners.len() - 2); + // Clip ears until there's only the last triangle left. + /* NOTE: This could be changed to > 2 and the last triangle would be pushed inside the loop, + * because it is also detected as an ear, however this is more logical to the original idea + * imo. + */ + while polygon.corners.len() > 3 { + // Find the ear with the highest index. + let ear = flags + .iter() + .rposition(|&x| (x & FLAG_EAR) != 0) + .expect("Polygon has more than three vertices, but no ear."); + + // Add the ear's triangle to the list. + { + let prev = (ear + polygon.corners.len() - 1) % polygon.corners.len(); + let next = (ear + 1) % polygon.corners.len(); + triangles.push(Triangle::new( + polygon.corners[prev], + polygon.corners[ear], + polygon.corners[next], + )); + + // Remove the ear from the polygon and the flag list. + polygon.corners.remove(ear); + flags.remove(ear); + } + + // Reassess the status of the two adjacent points. Notice that since the ear was removed, + // their array positions have changed. + let prev = if ear == 0 || ear == polygon.corners.len() { + polygon.corners.len() - 1 + } else { + ear - 1 + }; + let next = if ear == polygon.corners.len() { 0 } else { ear }; + + flags[prev] = flag_corner(&polygon, prev); + flags[next] = flag_corner(&polygon, next); + } + + // Push the remaining triangle into the list. + triangles.push(Triangle::new( + polygon.corners[0], + polygon.corners[1], + polygon.corners[2], + )); + + triangles +} + +#[cfg(test)] +mod test { + use super::*; + use crate::math::Vec2; + + #[test] + fn triangulate() { + let polygon = Polygon::new(vec![ + Vec2::new(0., 0.), + Vec2::new(0., 4.5), + Vec2::new(6.5, 4.5), + Vec2::new(5.5, 0.), + Vec2::new(5.5, 3.), + Vec2::new(1.5, 3.), + Vec2::new(1.5, 1.), + Vec2::new(2., 0.5), + Vec2::new(4., 2.), + Vec2::new(4., 0.), + ]); + + let triangles = super::triangulate(polygon); + + assert_eq!(triangles.len(), 8); + assert_eq!( + triangles[0], + (Triangle::new(Vec2::new(2., 0.5), Vec2::new(4., 2.), Vec2::new(4., 0.))) + ); + } +} diff --git a/src/math/rect.rs b/src/math/rect.rs index 6988b2c..876e728 100644 --- a/src/math/rect.rs +++ b/src/math/rect.rs @@ -1,6 +1,6 @@ -use super::Vec2; +use super::{LineSegment, Surface, Vec2}; //use alga::general::{Additive, Identity}; -use nalgebra::{RealField, Scalar}; +use nalgebra::{ClosedAdd, RealField, Scalar}; use num_traits::identities::Zero; use serde::{Deserialize, Serialize}; use std::ops::{Add, AddAssign, Sub}; @@ -18,48 +18,6 @@ pub struct Rect<T: Scalar + Copy> { pub h: T, } -// This is sad, but also sadly necessary :/ -impl<T: Into<f32> + Scalar + Copy> Into<raylib::ffi::Rectangle> for Rect<T> { - fn into(self) -> raylib::ffi::Rectangle { - raylib::ffi::Rectangle { - x: self.x.into(), - y: self.y.into(), - width: self.w.into(), - height: self.h.into(), - } - } -} -impl<T: From<f32> + Scalar + Copy> From<raylib::ffi::Rectangle> for Rect<T> { - fn from(r: raylib::ffi::Rectangle) -> Self { - Self { - x: T::from(r.x), - y: T::from(r.y), - w: T::from(r.width), - h: T::from(r.height), - } - } -} -impl<T: Into<f32> + Scalar + Copy> Into<raylib::math::Rectangle> for Rect<T> { - fn into(self) -> raylib::math::Rectangle { - raylib::math::Rectangle { - x: self.x.into(), - y: self.y.into(), - width: self.w.into(), - height: self.h.into(), - } - } -} -impl<T: From<f32> + Scalar + Copy> From<raylib::math::Rectangle> for Rect<T> { - fn from(r: raylib::math::Rectangle) -> Self { - Self { - x: T::from(r.x), - y: T::from(r.y), - w: T::from(r.width), - h: T::from(r.height), - } - } -} - impl<T: Scalar + Copy> Rect<T> { pub fn new(x: T, y: T, w: T, h: T) -> Self { Self { x, y, w, h } @@ -105,17 +63,6 @@ impl<T: Scalar + Copy> Rect<T> { || this.y + this.h < other.y) } - /// Check if the point is inside this Rect and return true if so. - pub fn contains(&self, point: Vec2<T>) -> bool - where - T: PartialOrd + Add<Output = T>, - { - point.x >= self.x - && point.x <= self.x + self.w - && point.y >= self.y - && point.y <= self.y + self.h - } - /// Returns true if the entire rect is contained inside this rectangle. pub fn contains_rect(&self, rect: Rect<T>) -> bool where @@ -181,6 +128,61 @@ impl<T: Scalar + Copy> Rect<T> { } } +impl<T: Scalar + Copy + PartialOrd + ClosedAdd> Surface<T> for Rect<T> { + fn contains_point(&self, point: &Vec2<T>) -> bool { + point.x >= self.x + && point.x <= self.x + self.w + && point.y >= self.y + && point.y <= self.y + self.h + } + + fn contains_line_segment(&self, line_segment: &LineSegment<T>) -> bool { + self.contains_point(&line_segment.start) && self.contains_point(&line_segment.end) + } +} + +// This is sad, but also sadly necessary :/ +impl<T: Into<f32> + Scalar + Copy> Into<raylib::ffi::Rectangle> for Rect<T> { + fn into(self) -> raylib::ffi::Rectangle { + raylib::ffi::Rectangle { + x: self.x.into(), + y: self.y.into(), + width: self.w.into(), + height: self.h.into(), + } + } +} +impl<T: From<f32> + Scalar + Copy> From<raylib::ffi::Rectangle> for Rect<T> { + fn from(r: raylib::ffi::Rectangle) -> Self { + Self { + x: T::from(r.x), + y: T::from(r.y), + w: T::from(r.width), + h: T::from(r.height), + } + } +} +impl<T: Into<f32> + Scalar + Copy> Into<raylib::math::Rectangle> for Rect<T> { + fn into(self) -> raylib::math::Rectangle { + raylib::math::Rectangle { + x: self.x.into(), + y: self.y.into(), + width: self.w.into(), + height: self.h.into(), + } + } +} +impl<T: From<f32> + Scalar + Copy> From<raylib::math::Rectangle> for Rect<T> { + fn from(r: raylib::math::Rectangle) -> Self { + Self { + x: T::from(r.x), + y: T::from(r.y), + w: T::from(r.width), + h: T::from(r.height), + } + } +} + #[cfg(test)] mod test { use super::*; diff --git a/src/math/triangle.rs b/src/math/triangle.rs new file mode 100644 index 0000000..35bdcec --- /dev/null +++ b/src/math/triangle.rs @@ -0,0 +1,251 @@ +use super::{LineSegment, Vec2}; +use alga::general::{ClosedMul, ClosedSub}; +use nalgebra::{RealField, Scalar}; +use num_traits::Zero; + +/// Represents a triangle +#[derive(Debug)] +pub struct Triangle<T: Scalar + Copy> { + /// The three corners of the triangle. Internally, it is made sure that the corners are always + /// ordered in a counterclockwise manner, to make operations like contains simpler. + corners: [Vec2<T>; 3], +} + +impl<T: Scalar + Copy> Triangle<T> { + /// Create a new Triangle as defined by its three corner points + pub fn new(a: Vec2<T>, b: Vec2<T>, c: Vec2<T>) -> Self + where + T: ClosedSub + ClosedMul + PartialOrd + Zero, + { + // Make sure the three points are in counterclockwise order. + match triplet_orientation(a, b, c) { + TripletOrientation::Counterclockwise => Self { corners: [a, b, c] }, + TripletOrientation::Clockwise => Self { corners: [a, c, b] }, + TripletOrientation::Collinear => { + warn!( + "Creating triangle without any area: [{:?}, {:?}, {:?}]", + a, b, c + ); + Self { corners: [a, b, c] } + } + } + } + + /// Get the corners immutably + pub fn corners(&self) -> &[Vec2<T>; 3] { + &self.corners + } + + /// Create a new Triangle from a three-point slice, instead of the three points one after + /// another. + pub fn from_slice(corners: [Vec2<T>; 3]) -> Self + where + T: ClosedSub + ClosedMul + PartialOrd + Zero, + { + Self::new(corners[0], corners[1], corners[2]) + } + + /// Check if the triangle contains a given point. If the point is right on an edge, it still + /// counts as inside it. + pub fn contains_point(&self, point: Vec2<T>) -> bool + where + T: ClosedSub + ClosedMul + PartialOrd + Zero, + { + // Since the points are ordered counterclockwise, check if the point is to the left of all + // edges (or on an edge) from one point to the next. When the point is to the left of all + // edges, it must be inside the triangle. + for i in 0..3 { + if triplet_orientation(self.corners[i], self.corners[(i + 1) % 3], point) + == TripletOrientation::Clockwise + { + return false; + } + } + + true + } +} + +/// Convert a three-point-slice into a triangle +impl<T: Scalar + Copy + ClosedSub + ClosedMul + PartialOrd + Zero> From<[Vec2<T>; 3]> + for Triangle<T> +{ + fn from(corners: [Vec2<T>; 3]) -> Self { + Self::new(corners[0], corners[1], corners[2]) + } +} +/// Convert a triangle into a three-point-slice. The corners are in counterclockwise order. +impl<T: Scalar + Copy> Into<[Vec2<T>; 3]> for Triangle<T> { + fn into(self) -> [Vec2<T>; 3] { + self.corners + } +} + +impl<T: Scalar + Copy + PartialEq> PartialEq for Triangle<T> { + fn eq(&self, other: &Self) -> bool { + // The indexes of the elements are not important, so try all shifting options. + for shift in 0..=2 { + if self + .corners + .iter() + .enumerate() + .find(|(i, &c)| c != other.corners[(i + shift) % 3]) + .is_none() + { + return true; + } + } + + false + } +} + +#[derive(PartialEq, Eq)] +pub(crate) enum TripletOrientation { + Clockwise, + Counterclockwise, + Collinear, +} + +/// Helper function to determine which direction one would turn to traverse from the first point +/// over the second to the third point. The third option is collinear, in which case the three points +/// are on the same line. +pub(crate) fn triplet_orientation<T>(a: Vec2<T>, b: Vec2<T>, c: Vec2<T>) -> TripletOrientation +where + T: Scalar + Copy + ClosedSub + ClosedMul + PartialOrd + Zero, +{ + /* Check the slopes of the vector from a to b and b to c. If the slope of ab is greater than + * that of bc, the rotation is clockwise. If ab is smaller than bc it's counterclockwise. If + * they are the same it follows that the three points are collinear. + */ + match (b.y - a.y) * (c.x - b.x) - (b.x - a.x) * (c.y - b.y) { + q if q > T::zero() => TripletOrientation::Counterclockwise, + q if q < T::zero() => TripletOrientation::Clockwise, + _ => TripletOrientation::Collinear, + } +} + +/// Calculate the angle between three points. Guaranteed to have 0 <= angle < 2Pi. The angle is +/// calculated as the angle between a line from a to b and then from b to c, increasing +/// counterclockwise. +/// +/// # Panics +/// If the length from a to b or the length from b to c is zero. +pub(crate) fn triplet_angle<T>(a: Vec2<T>, b: Vec2<T>, c: Vec2<T>) -> T +where + T: Scalar + Copy + ClosedSub + RealField + Zero, +{ + assert!(a != b); + assert!(b != c); + + // Handle the extreme 0 and 180 degree cases + let orientation = triplet_orientation(a, b, c); + if orientation == TripletOrientation::Collinear { + if LineSegment::new(a, b).contains_collinear(c) + || LineSegment::new(b, c).contains_collinear(a) + { + return T::zero(); + } else { + return T::pi(); + } + } + + // Calculate the vectors out of the points + let ba = a - b; + let bc = c - b; + + // Calculate the angle between 0 and Pi. + let angle = ((ba * bc) / (ba.length() * bc.length())).acos(); + + // Make angle into a full circle angle by looking at the orientation of the triplet. + match orientation { + TripletOrientation::Counterclockwise => T::pi() + (T::pi() - angle), + _ => angle, + } +} + +#[cfg(test)] +mod test { + use super::*; + use std::f64::consts::PI; + + #[test] + fn new() { + let a = Vec2::new(0., 0.); + let b = Vec2::new(0., 1.); + let c = Vec2::new(1., 1.); + + // Create with counterclockwise order. + let triangle = Triangle::new(a, b, c); + assert_eq!(triangle.corners(), &[a, b, c]); + + // Create with clockwise order. + let triangle = Triangle::new(a, c, b); + assert_eq!(triangle.corners(), &[a, b, c]); + + // Create with different starting corner + let triangle = Triangle::from([b, c, a]); + assert_eq!(triangle.corners(), &[b, c, a]); + + // Create with collinear corners + let triangle = Triangle::new(c, c, b); + assert_eq!(triangle.corners(), &[c, c, b]); + } + + #[test] + fn contains_point() { + let a = Vec2::new(0., 0.); + let b = Vec2::new(-1., -1.); + let c = Vec2::new(-2., 0.); + + let triangle = Triangle::new(a, b, c); + + assert!(triangle.contains_point(b)); + assert!(triangle.contains_point(Vec2::new(-0.5, -0.5))); + assert!(triangle.contains_point(Vec2::new(-1., -0.5))); + assert!(!triangle.contains_point(Vec2::new(-2., -2.))); + } + + #[test] + fn equality() { + let a = Vec2::new(0., 0.); + let b = Vec2::new(-1., -1.); + let c = Vec2::new(-2., 0.); + let d = Vec2::new(-3., 0.); + + let cmp = Triangle::new(a, b, c); + + assert_eq!(Triangle::new(a, b, c), cmp); + assert_eq!(Triangle::new(c, b, a), cmp); + assert_eq!(Triangle::new(b, a, c), cmp); + assert!(Triangle::new(a, b, d) != cmp); + } + + #[test] + fn triplet_angle() { + assert_eq!( + super::triplet_angle(Vec2::new(0., 0.), Vec2::new(0., -1.), Vec2::new(-1., -1.)), + 1.5 * PI + ); + assert_eq!( + super::triplet_angle(Vec2::new(2., 2.), Vec2::new(0., 0.), Vec2::new(-1., -1.)), + PI + ); + assert_eq!( + super::triplet_angle(Vec2::new(3., 1.), Vec2::new(0., 0.), Vec2::new(6., 2.)), + 0. + ); + assert_eq!( + super::triplet_angle(Vec2::new(3., 1.), Vec2::new(0., 0.), Vec2::new(-6., -2.)), + PI + ); + assert_eq!( + super::triplet_angle(Vec2::new(0., 1.), Vec2::new(0., 2.), Vec2::new(-3., 2.)), + 0.5 * PI + ); + assert_eq!( + super::triplet_angle(Vec2::new(3., 1.), Vec2::new(2., 2.), Vec2::new(0., 2.)), + 0.75 * PI + ); + } +} |
